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An asymptotic modal system is derived for modelling nonlinear sloshing in a
rectangular tank with similar width and breadth. The system couples nonlinearly
nine modal functions describing the time evolution of the natural modes. Two
primary modes are assumed to be dominant. The system is equivalent to the model
by Faltinsen et al. (2000) for the two-dimensional case. It is validated for resonant
sloshing in a square-base basin. Emphasis is on finite fluid depth but the behaviour
with decreasing depth to intermediate depths is also discussed. The tank is forced
in surge/sway/roll/pitch with frequency close to the lowest degenerate natural
frequency. The theoretical part concentrates on periodic solutions of the modal
system (steady-state wave motions) for longitudinal (along the walls) and diagonal (in
the vertical diagonal plane) excitations. Three types of solutions are established for
each case: (i) ‘planar’/‘diagonal’ resonant standing waves for longitudinal/diagonal
forcing, (ii) ‘swirling’ waves moving along tank walls clockwise or counterclockwise
and (iii) ‘square’-like resonant standing wave coupling in-phase oscillations of both
the lowest modes. The frequency domains for stable and unstable waves (i)–(iii), the
contribution of higher modes and the influence of decreasing fluid depth are studied in
detail. The zones where either unstable steady regimes exist or there are two or more
stable periodic solutions with similar amplitudes are found. New experimental results
are presented and show generally good agreement with theoretical data on effective
domains of steady-state sloshing. Three-dimensional sloshing regimes demonstrate a
significant contribution of higher modes in steady-state and transient flows.

1. Introduction
Two-dimensional resonant fluid sloshing in a rectangular tank has been extensively

studied theoretically, experimentally and numerically. This is commonly used to
assess sloshing effects in ship tanks. However, a two-dimensional model becomes
questionable when the length and the breadth of the tank are of the same order of
magnitude, or, in particular, equal. Even if the horizontal excitation is parallel to
the walls, a strong three-dimensional flow including chaotic behaviour may occur for
resonant excitation at the lowest natural frequency. This is associated with instability
of two-dimensional motions relative to spatial disturbances. A similar problem with
two conjugate modes occurs for vertical circular cylindrical and spherical tanks.
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Fundamental theoretical and experimental work on axial-symmetric tanks have been
motivated by the space industry (Abramson 1966 and Mikishev 1978). Theoretical
studies of nonlinear sloshing in axial-symmetric tanks are presented by Narimanov,
Dokuchaev & Lukovsky (1977), Miles (1984a, b), Lukovsky (1990) and many others.
These studies made significant progress in the theoretical treatment of ‘swirling’
(rotary) waves due to sway/pitch resonant forcing, which can cause significant
longitudinal and transverse horizontal forces. (Abramson et al. 1974 demonstrated this
experimentally for a spherical LNG tank when the horizontal excitation amplitude
is sufficiently large and the excitation amplitude is higher than the lowest natural
frequency.)

Stolbetsov (1967) may have been the first to study theoretically nonlinear resonant
sloshing in a near-square basin due to horizontal harmonic forcing along one of the
walls with excitation frequency close to the lowest natural frequency. He used the
perturbation technique by Narimanov (1957) and postulated two types of steady-state
solutions. The first one describes two-dimensional steady-state motions (‘planar’†
waves). The second is equivalent to ‘swirling’ waves for rectangular geometry.
Unfortunately, this original work (as remarked by Lukovsky 1990) contains arithmetic
errors. This might be the reason why it did not initiate more detailed studies by other
authors. Being familiar with both former Soviet and Western literature, the present
authors could find only a limited set of experimental and theoretical works closely
related to this topic in the period from 1960 to 1990. Existing theoretical papers on
nonlinear sloshing in a square basin are almost always devoted to either Faraday
waves (the most cited representative papers and reviews are for instance by Nevolin
1984; Feng & Sethna 1989; Simonelli & Gollub 1989; Henderson & Miles 1990;
Nagata 1991; Miles 1994; Perlin & Schultz 2000), free waves in a basin (see some
important results by Bridges 1985, 1987; Bryant & Stiassnie 1994, 1995) or wavemaker
studies (see the review by Tsai, Yue & Yip 1990).

Since free waves in a basin may be treated as a limiting case of resonant waves
with extremely small (zero) excitation amplitude, the papers on this subject are
relevant for our study. Bridges (1987) and Bryant & Stiassnie (1994, 1995) presented
theoretical results on free nonlinear periodic waves in square tanks of deep and shallow
fluid depths. The analysis by Bridges (1987) was restricted to lowest order modes,
while Bryant & Stiassnie (1995) used both the third-order Zakharov equation and
direct numerical calculations for the original free boundary problem (for infinite
depth).

Along with some special periodic solutions described by Bryant & Stiassnie (1994)
(which are probably not realized for resonant sloshing) three types of free nonlinear
monoharmonical waves can be classified for a square-base basin: (i) ‘planar’ (two-
dimensional) Stokes standing wave, (ii) the standing wave consisting of an oscillation
from one corner to the opposite corner with much less motion in other corners (we will
call them (following Miles 1994) ‘diagonal’ or ‘square’-like waves) and (iii) ‘swirling’
waves, where an almost flat crest travels around each of the four sides with an almost
flat trough on the opposite side. Bryant & Stiassnie (1995) showed, in particular, that
two-dimensional Stokes-type periodic waves are unstable when subjected to three-
dimensional perturbations, while three-dimensional waves are stable. Waterhouse
(1995) and Ockendon, Ockendon & Waterhouse (1996) studied longitudinally excited

† We follow Miles (1984b) and adopt terminology usually used for sloshing in vertical circular
cylindrical tanks and in the mechanics of a spherical pendulum.
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steady-state multi-mode nonlinear resonance in a near-square tank with either fairly
deep or shallow fluid depth. The same three types of waves mentioned above are
part of their analysis. Emphasis was on the effect of wall imperfections (Bridges
1985, 1986, 1987 examined earlier the effect of a perturbed square shape on the free
waves). Stability of steady-state sway/surge/roll/pitch forced motions and changing
from deep or finite to smaller depths with consequent activation of higher modes
were not investigated. (This was recently done by Faltinsen et al. 2000 and Faltinsen
& Timokha 2001, 2002a for two-dimensional nonlinear resonant waves.) In addition,
there is a need for physical clarification of what can happen for more general types of
horizontal/angular excitation, in particular, for diagonal excitation, which has been
experimentally investigated by Chen & Arai (1995).

The majority of analytical approaches to nonlinear resonant sloshing in rectangular/
circular-base tanks reduce the analysis to governing the equations describing the
evolution of asymptotically dominating modes. The most popular method is to use
Moiseyev detuning to derive a small-dimensional Hamiltonian systems coupling slowly
varying amplitudes of these leading modes. Examples and a general theory of such a
class of Hamiltonian systems for free and harmonically forced sloshing are presented
in applied mathematical works by Miles (1984a, b), Bridges (1986, 1988), Feng &
Sethna (1989), Nagata (1991), Miles (1994) and many others. They establish multiple
steady-state solutions for a given excitation frequency. Since these solutions co-exist,
it is not clear which of them will be realized for coupled sloshing and ship motions
externally excited by a seaway. Another problem of these analytical methods is the
computation of the wave response for small but realistic forcing and intermediate
depth/breadth ratio h. Even relative small deviations of excitation frequency may
then change the set of leading modes (Faltinsen & Timokha 2001). Alternatives are
to use either CFD or a multimodal method.

Examples related to CFD simulations of three-dimensional flows in ship tanks are
given by Arai et al. (1992b), Arai, Cheng & Inoue (1992a, 1993), ISSC Report (1997),
Faltinsen & Rognebakke (2000) and Wu, Ma & Taylor (1998). Many papers give
successful examples for two-dimensional sloshing (see, for instance, recent papers by
Celebi & Akyildiz 2002; Sames, Marcouly & Schellin 2002; Aliabadi, Johnson &
Abedi 2003). Advantages and disadvantages of various CFD methods are compared
in reviews in the ISSC Report (1997) and Ibrahim, Pilipchuk & Ikeda (2001). Reviews
by Solaas (1995), Faltinsen & Rognebakke (2000), Faltinsen & Timokha (2002a) and
Ibrahim et al. (2001) provide interested readers with a comparison between several
analytical and numerical methods.

We develop in this paper a multimodal approach to nonlinear sloshing in a square-
base tank. Its fundamental idea comes from Narimanov (1957) and consists in the
derivation of a multi-dimensional system of ordinary differential equations coupling
the actual time-evolution of multiple natural modes, where the coefficients are given
functions of the fluid depth. A short historical review of the modal methods is given
by Faltinsen et al. (2000) and Faltinsen & Timokha (2002a). Recent studies by La
Rocca, Mele & Armenio (1997), Faltinsen & Timokha (2001) and Rognebakke &
Faltinsen (2003) demonstrated that this modal method may be adopted for both
analytical studies of resonant waves and simulations of coupled ‘body–fluid’ motions.
Lukovsky (1990) showed that the Hamiltonian dynamic system mentioned above can
be easily derived from the corresponding modal systems by introducing an additional
slowly varying time scale. The modal methods allow any physically possible initial
conditions and are in general numerically robust and very time efficient compared
to CFD simulations. This makes it realistic to obtain a statistical distribution of the



4 O. M. Faltinsen, O. F. Rognebakke and A. N. Timokha

response variables of sloshing in a ship tank in a stochastic sea. Along with a modal
system adopting Moiseyev-like ordering, Faltinsen & Timokha (2001, 2002a) presented
an adaptive modal modelling technique for two-dimensional waves accounting for
dynamic changes in the leading modes (ordering). This method is applicable for
both large-amplitude sloshing and intermediate depths. Disadvantages are that the
multimodal methods are at present limited to vertical cylindrical tank shapes and two-
dimensional rectangular tanks with no roof impact or overturning waves. Further, the
free surface should intersect the tank wall perpendicularly and therefore significant
run-up at the walls cannot be captured.

Section 2.2 starts with the general modal system derived by Faltinsen et al. (2000)
as a full analogy of the original free boundary problem for sloshing of a perfect
incompressible fluid in irrotational motion. This equivalence was proved by assuming
that the free surface allows the usual presentation z = f (x, y, t). It adopts solutions
of the spectral problem of linear sloshing as a Fourier basis for the equations
of the free surface and the velocity potential. Ordering the external combined
sway/surge/pitch/roll forcing as having the highest asymptotic order O(ε) � 1 we
derive in § 2.3 a third-order modal theory in terms of the Fourier coefficients βi,j (t)
representing the time-evolution of the free surface. This operation assumes that all
modes may have dominant behaviour O(ε1/3). It is fully consistent with analogous
derivations of the adaptive modal system by Faltinsen & Timokha (2001) for two-
dimensional flows and with the third-order theory by Zakharov (1968).

In § 3.1 we concentrate on the finite depth ordering, which suggests only two
dominant modes associated with the two lowest two-dimensional standing waves
occurring along the Ox- and Oy- axes parallel to two orthogonal tank walls. Such
ordering is relevant for the case of direct resonant excitation of these modes when
corresponding natural frequencies are equal. This may happen for near-square cross-
section. The adaptive modal system has then a finite-dimensional nonlinear kernel
subsystem of nine ordinary differential equations. Other modal equations are linear.
Solutions of this modal system may be studied either analytically or numerically. The
system can also be incorporated in the equations of ‘body–fluid’ motions and provide
efficient calculations of the coupled motions.

The modal systems have already been used in practical applications for two-
dimensional flows in a ship tank excited by a stochastic sea with many frequency
components. Validation of the modal systems is typically done for resonant harmonic
excitation of the lowest modes. This makes it possible to establish lower/upper bounds
in terms of the excitation frequency domain, fluid depths and excitation amplitude.
The particular case of the modal theory from § 3.1 describing two-dimensional sloshing
was presented by Faltinsen et al. (2000). Systematic comparison of the experimental
data and corresponding theoretical results established its qualitative applicability (for
extremely small resonant forcing) for 0.24 � h, where h is fluid depth. Quantitative
agreement can be achieved only for 0.27 � h. The failure is caused by the increasing
contribution from the higher (non-leading) modes.

In § 3.2–3.3 we examine the resonant sloshing analytically and obtain periodic
(steady-state) solutions of the modal system up to O(ε). The procedure combines
Bubnov–Galerkin and asymptotic techniques (Faltinsen et al. 2000). The secular
system of algebraic equations couples the primary amplitudes of the dominating
modes. It contains three coefficients, m1, m2 and m3, depending on the depth and the
excitation frequency. The properties of solutions depend strongly on the values of
mi . The coefficients are either approximately constant or vary slowly for h � 0.337 ..
When the depth becomes smaller, solutions of this system undergo strong changes.
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The system may even become insoluble for some critical depths. Starting from this
system we can derive a Hamiltonian system (of two degrees of freedom) governing the
slow-time evolution of the primary amplitudes as in the papers already mentioned.
The only difference is that coefficients of that Hamiltonian system are not constant
but functions of the excitation frequency (Moiseyev detuning).

The analysis of the secular system for longitudinal excitations (§ 3.4) establishes
three, and only three, types of periodic solutions. These are (i) two-dimensional res-
onant waves (Faltinsen et al. 2000), (ii) so-called ‘square’-like waves and (iii) ‘swirling’
waves. The frequency domains where these are stable change with depth. So, for
larger finite depths stable ‘swirling’ motions are realized in the close vicinity of
the main resonance, while stable ‘planar’ waves occur for frequencies not too close
to the main resonance. In addition, there is a frequency domain where no stable steady-
state solutions exist and, therefore, chaotic wave motions are expected. ‘Square’-like
waves for large fluid depths either co-exist with ‘planar’ motions or have a very
narrow non-overlapped frequency domain. Initial or transient perturbations will
influence which of these waves (‘planar’ or ‘square’-like) will occur in the range
where they co-exist. Since it is most probable that zero initial conditions and constant
excitation frequency (typical for our experiments) lead to steady-state solutions having
the lowest amplitude, ‘square’-like waves are not realized in the major part of the
experimental series. Since the frequency domain of ‘square’-like waves for smaller
depths occupies a wide zone near the main resonance and the wave amplitude
is lower than for corresponding ‘planar’ waves, ‘square’-lie waves then become of
primary interest. Intuitively, this type of wave motion should turn into diagonal-like
wave-trains as described by Ockendon et al. (1996) for shallow depths. This was
established numerically by Wu et al. (1998) and observed experimentally by Tomawa
& Sueoka (1989).

The experimental studies by Arai et al. (1992a, b, 1993) and Chen & Arai (1995)
motivated us to examine steady-state sloshing due to excitation in a diagonal plane
(§ 3.5). Three, and only three, types of periodic waves were found. Along with ‘swirling’
wave motions and a mixed ‘square’-like standing wave (the last one always becomes
unstable), the analysis establishes the ‘diagonal’ standing resonant wave. The analysis
shows that stable steady-state solutions occur for all frequencies in the vicinity of
the main resonance and that there are some frequency domains where two stable
standing wave types co-exist.

New model tests results are also presented and compared with the theoretical
predictions in §§ 4.1–4.3. Good agreement between predicted and observed types of
wave motions in different frequency domains was found. The experiments confirmed
the existence of three-dimensional wave motions predicted theoretically (see figure 1
demonstrating experimental observations of ‘swirling’ phenomena). Although we did
not focus on the influence of the excitation amplitude on wave amplitude response,
both the theory and isolated experimental series showed that the frequency domains
of the three-dimensional response increases with increasing forcing. The numerical
results for the three-dimensional wave amplitudes near the walls may in many cases
give lower values than the measured ones. The relative errors of our asymptotic model
are between 7% and 30% in the presented cases. The discrepancy for predictions by
leading modes is up to 200%. This confirms a significant contribution of the higher
modes and indicates a possible further modification of the modal systems to account
for secondary resonance in a similar way as done by Faltinsen & Timokha (2001)
for two-dimensional sloshing. Additional improvements of the theory consist of a
matching with local near-wall phenomena.
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(a) (b) (c)

(d ) (e) (f)

(g) (h) (i)

Figure 1. Photo time series (from (a) to (i)) demonstrating counterclockwise (top view)
‘swirling’ wave motions in a square-base tank for the depth/breadth ratio h = 0.508. The tank is
excited longitudinally (back and forth motions relative to the camera) with amplitude/breadth
ratio H = 0.0078. The excitation frequency is equal to the lowest natural frequency.

2. Statement of the problem
2.1. Geometric preliminaries and free boundary problem

Let a rigid open parallelepipedal tank with breadth L1, width L2 and height D be
partially filled by a perfect fluid with the mean depth h. We assume potential flow
and make lengths non-dimensional by dividing with L1, so that we consider a tank
with breadth 1, width 1/r = L2/L1 and height D/L1. Thus new values of the physical
constants h := h/L1, g := g/L1 (g is the gravitational acceleration) etc. are defined.
This means that h in the following text is dimensionless and g has dimension [s−2].
Since the analysis assumes no roof impact, D is not a parameter in our studies.

The motions of the tank are described by a pair of time-dependent vectors vO(t)
and ω(t) = ψ̇(t) representing instantaneous translatory and angular velocities of the
mobile Cartesian coordinate system Oxyz relative to an absolute coordinate system
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Figure 2. Sketch of the tank moving in space. The vectors P ′
O,ω = (ω1, ω2, ω3) and vO =

(vO1, vO2, vO3) are considered in the moving coordinate system Oxyz fixed to the rigid tank.

O ′x ′y ′z′ (figure 2). The coordinate system Oxyz is rigidly fixed to the tank. Its origin O

coincides with the middle point of the mean fluid surface so that the mean fluid surface
belongs to the Oxy-plane and the Ox and Oy-axes are parallel to the vertical walls.
Since any absolute position vector P ′(t) = (x ′, y ′, z′) can be decomposed into the sum
of P ′

O(t) =
→

O ′O and the relative position vector P = (x, y, z), the gravity potential
U depends on the spatial coordinates (x, y, z) and time t , namely U (x, y, z, t) =
−g · P ′, P ′ = P ′

O + P , where g is the gravitational acceleration vector. The derivation
of the corresponding hydrodynamic free boundary problem is given in many textbooks
(see, for instance, Moiseyev & Rumyantsev 1968 and Narimanov et al. 1977). When
vO(t) and ω(t) (or ψ(t)) are given functions (prescribed motions of the tank), this
problem takes the following form:

�Φ = 0 in Q(t),
∂Φ

∂ν
= vO · ν + ω · [P × ν] on S(t),

∂Φ

∂ν
= vO · ν + ω · [P × ν] − ξt

|∇ξ | on Σ(t),

∫
Q(t)

dQ = const,

∂Φ

∂t
+ 1

2
(∇Φ)2 − ∇Φ · (vO + ω × P) + U = 0 on Σ(t).




(2.1)

Here the unknowns are the function ξ (x, y, z, t) defining the free-surface evolution
Σ(t) : ξ (x, y, z, t) = 0 and the absolute velocity potential Φ(x, y, z, t) which should be
calculated in a time-varying volume Q(t) confined to the wetted body surface S(t) and
Σ(t); ν is the outward normal to Q(t). The evolutional free boundary problem (2.1)
should be completed by either initial or periodicity conditions. The initial (Cauchy)
conditions require

ξ (t0, x, y, z) = ξ0(x, y, z),
∂Φ

∂ν

∣∣∣
Σ(t0)

= Φ0(x, y, z) (2.2)
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(a) (b) (c)
Saddle point

x
y

x
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y

Figure 3. Sketches of three-dimensional wave patterns associated with modal shapes (2.6)
and (2.7). Here (a) illustrates the shape of (2.6), but ‘squares’ S1

2 (x, y) and S1
1 (x, y) of (2.7) are

shown in (b) and (c) respectively.

to be known at t = t0. The periodicity conditions are in many applied problems
associated with periodicity of the wave pattern and velocity field, i.e.

ξ (t + T , x, y, z) = ξ (t, x, y, z), ∇Φ(t + T , x, y, z) = ∇Φ(t, x, y, z). (2.3)

This requires that Q(t +T ) = Q(t). Further, the last equality in (2.3) is justified by the
first one (for ξ ) establishing the equivalence of instantaneous fluid shapes at t and
t + T .

2.2. Natural modes and modal system by Faltinsen et al. (2000)

When vO = ω = 0, the linearization of equation (2.1) describes natural waves Φ =
exp(iσi,j t)ϕi,j (x, y, z), (i2 = −1), where

ϕi,j (x, y, z) = f
(1)
i f

(2)
j

cosh(λi,j (z +h))

cosh(λi,j h)
,

λi,j = π
√

i2 + r2j 2, σ 2
i,j = gλi,j tanh(λi,j h),

}
i, j � 0, i + j �= 0, (2.4)

and σi,j are the natural frequencies. Projections of ϕi,j on the mean free surface z = 0
introduce the shapes of standing waves fi,j (x, y) = ϕi,j |z=0.

Physically, fi,j may be classified in terms of subclasses. The first one consists of
two-dimensional Stokes wave shapes in the Oxz- and Oyz-planes. Corresponding
natural modes have often been called ‘planar’ waves (Miles 1994, also used ‘rolls’ as
the name). These are

f
(1)
i (x) = cos(πi(x + 1/2)), i � 0, f

(2)
j (y) = cos(πjr(y + 1/(2r))), j � 0. (2.5)

Another subclass defines three-dimensional wave patterns (figure 3a)

f
(1)
i (x)f (2)

j (y), i, j � 1. (2.6)

Later analysis will show that it is convenient to introduce the mixed modes also

Si
1(x, y) = f

(1)
i (x) − f

(2)
i (y), Si

2(x, y) = f
(1)
i (x) + f

(2)
i (y), (2.7)

recombining two Stokes modes of (2.5) into three-dimensional patterns (see
figure 3b, c). In order to simplify the narrative we will denote them ‘diagonal’ or
(due to Miles 1994) ‘square’. If different non-zero weight coefficients are associated
with f

(1)
i and f

(2)
i , i.e. Af

(1)
i + Bf

(2)
i , AB �= 0, |A| �= |B|, we call them ‘square’-like

modes.
The set {fi,j (x, y), i + j � 1} represents an appropriate Fourier basis in the

horizontal rectangular cross-section of the tank [−1/2, 1/2] × [−1/(2r), 1/(2r)], and
{ϕi,j (x, y, z), i+j � 1} is a complete system of harmonic functions in the unperturbed
fluid domain Q0 = [−1/2, 1/2] × [−1/(2r), 1/(2r)] × [−h, 0], which satisfies zero
Neumann boundary conditions on the tank surface. Following the general modal
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scheme by Faltinsen et al. (2000) (see their equations (3.4), (3.6) and (3.7)) we impose
solution of (2.1) as

ξ (x, y, z, t) = z − f (x, y, t), f (x, y, t) = βi,j (t)f (1)
i (x)f (2)

j (y), (2.8)

Φ(x, y, z, t) = v0 · P + ω · Ω + Ri,j (t)ϕi,j (x, y, z), (2.9)

where the summation is performed by the repeated upper–lower indexes i, j � 0, i +
j �=0. Here βi,j (t) and Ri,j (t) are unknown time-dependent functions governing the
evolution of the free surface and the velocity potential. Further, Ω(x, y, z, t) =
(Ω1, Ω2, Ω3) is the Stokes–Zhukovsky potential defined by the Neumann boundary
value problem:

�Ω = 0 in Q(t),
∂Ω1

∂ν

∣∣∣∣
S(t)+Σ(t)

= yνz − zνy,

∂Ω2

∂ν

∣∣∣∣
S(t)+Σ(t)

= zνx − xνz,
∂Ω3

∂ν

∣∣∣∣
S(t)+Σ(t)

= xνy − yνx,


 (2.10)

where νx, νy, νz are the projections of the outer normal onto the Oxyz-axes.
We assume that the tank does not perform yaw/heave motions, i.e. vO3 = ω3 =

0 (figure 2). In addition, ω1, ω2, vO1, vO2 and their derivatives define a combined
oscillatory sway/surge/roll/pitch forcing which are sufficiently small and of order
ε � 1. Using the general infinite-dimensional modal system of Faltinsen et al. (2000)
gives the following system of ordinary differential equations coupling βi,j and Ri,j (a
dot over a symbol means the time derivative) derived correct to O(ε) in the forcing
terms:

∂An,k

∂βi,j

β̇i,j = A(n,k)(i,j )R
n,k, n, k = 0, 1, . . . , n + k �=0, (2.11)

∂An,k

∂βi,j

Ṙn,k +
1

2

∂A(n,k),(l,m)

∂βi,j

Rn,kRl,m + ω̇1

∂l1ω

∂βi,j

+ ω̇2

∂l2ω

∂βi,j

+ ω1

∂l1ωt

∂βi,j

+ ω2

∂l2ωt

∂βi,j

− d

dt

(
ω1

∂l1ωt

∂β̇i,j

+ ω2

∂l2ωt

∂β̇i,j

)
+ (v̇01 − g1)

∂l1

∂βi,j

+ (v̇02 − g2)
∂l2

∂βi,j

+ (−g3)
∂l3

∂βi,j

= 0, i, j = 0, 1, . . . , i + j �= 0. (2.12)

Here

lkω =

∫
Q(t)

Ωk dQ, lkωt =

∫
Q(t)

∂Ωk

∂t
dQ,

l1 =

∫
Q(t)

x dQ, l2 =

∫
Q(t)

y dQ, l3 =

∫
Q(t)

z dQ,

An,k =

∫
Q(t)

ϕn,k dQ, A(n,k),(i,j ) =

∫
Q(t)

(∇ϕn,k, ∇ϕi,j ) dQ




(2.13)

are nonlinear functions of βl,m.
Although we neglect forcing terms which are of o(ε), this system does not account

for the smallness of the generalized coordinates βi,j and Rn,k . This must be done after
ordering them relative to the forcing amplitude.
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2.3. Third-order adaptive modal system

Analytical studies devoted to two-dimensional sloshing as well as existing asymptotic
schemes for three-dimensional nonlinear sloshing with finite fluid depth are almost
always based on third-order relationships between the fluid amplitude response
and the forcing. This implies an infinite number of βi,j and Ri,j , restricted by
βi,j � O(ε1/3), Ri,j � O(ε1/3). Examples are the adaptive modal system by Faltinsen
& Timokha (2001) and the third-order equation by Zakharov (1968). These assume
an equal contribution from all the modes, i.e.

βi,j ∼ Ri,j = O(ε1/3), i + j � 1, (2.14)

related to the forcing amplitude ε.
Accounting for (2.14) in (2.11)–(2.13) and keeping the terms of O(ε) gives the

following infinite-dimensional modal system coupling βi,j :

β̈a,b
[
δiaδjb + d

1,(i,j )
(a,b),(c,d)β

c,d + d
2,(i,j )
(a,b),(c,d),(e,f )β

c,dβe,f
]

+ σ 2
i,jβi,j

+ β̇a,bβ̇c,d
[
t
0,(i,j )
(a,b),(c,d) + t

1,(i,j )
(a,b),(c,d),(e,f )β

e,f
]

+ P
(2)
i,j

[
v̇O2 + S

(2)
j ψ̈1 + gψ1

]
+ P

(1)
i,j

[
v̇O1 − S

(1)
i ψ̈2 − gψ2

]
= 0, i + j � 1, (2.15)

where all the coefficients (tensors d, t, P and S) are calculated explicitly in Appendix A
as functions of h. The derivation of (2.15) became particularly tedious and analytically
difficult compared to analogous analytical manipulations for two-dimensional sloshing
by Faltinsen & Timokha (2001). Hydrodynamic forces and moments can be found in
terms of βi,j . This is not further pursued in this paper.

The system (2.15) captures progressive nonlinear activation of an infinite set of
natural modes in the framework of a third-order theory. An appropriate mechanism
of amplification may be the secondary (internal) resonance (see Bridges 1985, 1987;
Bryant 1989; Ockendon et al. 1996; Faltinsen & Timokha 2002a). The system (2.15)
needs the initial conditions

βi,j = α0
i,j , β̇i,j = α1

i,j , i + j � 1, (2.16)

where the known constants α0
i,j and α1

i,j describe the initial fluid shape and the initial
velocity respectively. These constants may be obtained from Fourier treatment of
(2.2). For periodic forcing we can also employ the periodic conditions (equivalent to
(2.3))

βi,j (t + T ) = βi,j (t), β̇i,j (t + T ) = β̇i,j (t), i + j � 1, (2.17)

where T is the forcing period.
The system (2.15) together with (2.16) (or (2.17) may be truncated and implemented

for numerical analysis of the fluid sloshing as in Perko-like methods (see, for instance,
recent papers by La Rocca et al. 1997; La Rocca, Sciortino & Boniforti 2000; Shankar
& Kidambi 2002). For periodic forcing the numerical approach makes it also possible
to treat the periodic steady-state solutions including bifurcation and stability analysis
by employing appropriate codes given by Bader & Ascher (1987) and Hermann &
Ullrich (1992). Another way (Faltinsen & Timokha 2001) consists in preliminary
asymptotic simplification of (2.15) with the selection of leading modes and then
reduction to a nonlinear finite-dimension system. This may lead to a modal system
of less accuracy but provides much more time-efficient and robust simulations.
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3. Sloshing in a square-base basin
3.1. Asymptotic modal system for near-square cross-section

Moving to square geometry implies σi,j → σj,i (r → 1) and, therefore, the pair

of primary natural modes f
(1)
1 and f

(2)
1 becomes degenerate (having equal natural

frequencies). Analysing the secondary (internal) resonance relationships for higher
modes σi,j ≈ 2σ1,0, i + j = 2; σi,j ≈ 3σ1,0, i + j = 3 etc. for r = 1 we find these
are not satisfied for finite (non-shallow) h. Amplification of the modal functions
βi,j will basically depend on external forcing and initial conditions. Fundamental
experimental studies by Abramson (1966) and Mikishev (1978) showed that maximum
wave amplification due to surge/sway/pitch/roll excitation occurs when external
forcing is periodic and close to the lowest natural frequency (here σ1,0 ≈ σ0,1). The
asymptotic limit ε → 0 then suggests only two primary leading modes. Accounting
for the structure of (2.15) yields

β1,0 ∼ β0,1 = O
(
ε1/3
)
, β2,0 ∼ β1,1 ∼ β0,2 = O

(
ε2/3
)
,

β3,0 ∼ β2,1 ∼ β1,2 ∼ β0,3 = O(ε), βi,j � O(ε), i + j � 4

}
(3.1)

in terms of ε.
These relationships are consistent with the Moiseyev third-order assumptions in

the form given by Faltinsen et al. (2000) leading to the single dominant modal
theory for two-dimensional sloshing. The calculation shows that (3.1) reduces (2.15)
to a finite-dimensional system of nonlinear ordinary differential equations coupling
βi,j , i + j � 3. Other modes (i + j � 4) are easily governed by the linear sloshing
theory. After re-denoting for brevity

β1,0 = a1, β2,0 = a2, β0,1 = b1, β0,2 = b2, β1,1 = c1,

β3,0 = a3, β2,1 = c21, β1,2 = c12, β0,3 = b3

}
(3.2)

the modal system for (2.15) can be re-written in the following approximate form:[
ä1 + σ 2

1,0a1 + d1(ä1a2 + ȧ1ȧ2) + d2

(
ä1a

2
1 + ȧ2

1a1) + d3ä2a1

+ P
(1)
1,0

(
v̇O1 − S

(1)
1 ψ̈2 − gψ2

)]
+ d6ä1b

2
1 + b̈1(d7c1 + d8a1b1) + d9c̈1b1

+ d10ḃ
2
1a1 + d11ȧ1ḃ1b1 + d12ḃ1ċ1 = 0, (3.3a)[

b̈1 + σ 2
0,1b1 + d̄1(b̈1b2 + ḃ1ḃ2) + d̄2

(
b̈1b

2
1 + ḃ2

1b1

)
+ d̄3b̈2b1

+P
(2)
0,1

(
v̇O2 + S

(2)
1 ψ̈1 + gψ1

)]
+ d̄6b̈1a

2
1 + ä1(d̄7c1 + d̄8a1b1) + d̄9c̈1a1

+ d̄10ȧ
2
1b1 + d̄11ȧ1ḃ1a1 + d̄12ȧ1ċ1 = 0, (3.3b)[

ä2 + σ 2
2,0a2 + d4ä1a1 + d5ȧ

2
1

]
= 0, (3.3c)[

b̈2 + σ 2
0,2b2 + d̄4b̈1b1 + d̄5ḃ

2
1

]
= 0, (3.3d)

c̈1 + d̂1ä1b1 + d̂2b̈1a1 + d̂3ȧ1ḃ1 + σ 2
1,1c1 = 0, (3.3e)[

ä3 + σ 2
3,0a3 + ä1

(
q1a2 + q2a

2
1

)
+ q3ä2a1 + q4ȧ

2
1a1 + q5ȧ1ȧ2

+ P
(1)
3,0[v̇O1 − S

(1)
3 ψ̈2 − gψ2]

]
= 0, (3.4a)

c̈21 + σ 2
2,1c21 + ä1(q6c1 + q7a1b1) + b̈1

(
q8a2 + q9a

2
1

)
+ q10ä2b1 + q11c̈1a1

+ q12ȧ
2
1b1 + q13ȧ1ḃ1a1 + q14ȧ1ċ1 + q15ȧ2ḃ1 = 0, (3.4b)
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c̈12 + σ 2
1,2c12 + b̈1(q̄6c1 + q̄7a1b1) + ä1(q̄8b2 + q̄9b

2
1) + q̄10b̈2a1 + q̄11c̈1b1

+ q̄12ḃ
2
1a1 + q̄13ȧ1ḃ1b1q̄14ḃ1ċ1 + q̄15ȧ1ḃ2 = 0, (3.4c)[

b̈3 + σ 2
0,3b3 + b̈1

(
q̄1b2 + q̄2b

2
1

)
+ q̄3b̈2b1 + q̄4ḃ

2
1b1 + q̄5ḃ1ḃ2

+ P
(2)
0,3

[
v̇O2 + S

(2)
3 ψ̈1 + gψ1

]]
= 0 (3.4d)

with coefficients di(h), d̄ i(h), d̂ i(h), qi(h) and q̄ i(h) calculated by formulae in
Appendix B. The higher modes are governed by linear equations:

β̈i,j +σi,jβi,j +P
(2)
i,j

[
v̇O2 +S

(2)
j ψ̈1 +gψi

]
+P

(1)
i,j

[
v̇O1 −S

(1)
i ψ̈2 −gψ2

]
=0, i +j �4. (3.5)

We see in (3.3), (3.4) that the terms in square brackets are associated with ‘planar’
flows in either Oxz- or Oyz-planes. They are exactly the same as derived by Faltinsen
et al. (2000). Other terms and additional equations for c11, c21 and c12 are due
to three-dimensional intermodal interaction. Here the subsystem (3.3) is complete
in a1, b1, a2, b2 and c1 and does not depend on a3, c21, c12 and b3 calculated from
(3.4). The subsystem (3.4) is linear in a3, c21, c12 and b3 and depends nonlinearly on
a1, b1, a2, b2 and c1.

The asymptotic system (3.3)–(3.5) is the main mathematical object of this paper. It
is formally of infinite degrees of freedoms and, therefore, needs the initial (2.16) or
periodical (2.17) conditions for all the modes. However, only nine degrees of freedom
(equations (3.3) and (3.4)) are nonlinearly coupled. When we know the forcing terms
and initial (or periodic) conditions explicitly, we can easily integrate the system’s
linear (infinite) subsystem (3.5). The actual analysis reduces to the nonlinear part
(3.3), (3.4).

3.2. Steady-state motions due to resonant harmonic excitation

Let us assume that the external forcing is a harmonic function of time. Although this
can imply phase shifts in v̇Oi and ψi (ωi = ψ̇ i), i = 1, 2, we concentrate without
loss of generality on the synchronized horizontal/angular harmonic excitation, i.e.
v̇Oi = −σ 2Hi cos σ t, ψi = ψ0i cos σ t and ωi = −σψ0i sin σ t, i = 1, 2 with

H1 = H cos θ1, H2 = sin θ2; ψ1 = ψ0 cos θ2, ψ2 = ψ0 sin θ2 (3.6)

(H is the amplitude of translatory excitation, ψ0 is the angular amplitude and
(cos θi, sin θi), i = 1, 2, are the guiding vectors for these excitations). This transforms
the forcing terms in (3.3a), (3.3b), (3.4a) and (3.4d) to the following form:

−σ 2P1 cos σ t =
[
σ 2P

(1)
1,0

(
−H1 + ψ02

(
S

(1)
1 − g/σ 2

))]
cos σ t,

−σ 2P2 cos σ t =
[
σ 2P

(2)
0,1

(
−H2 + ψ01

(
−S

(2)
1 + g/σ 2

))]
cos σ t,

−σ 2P3 cos σ t =
[
σ 2P

(1)
3,0

(
−H1 + ψ02

(
S

(1)
3 − g/σ 2

))]
cos σ t,

−σ 2P4 cos σ t =
[
σ 2P

(2)
0,3

(
−H2 + ψ01

(
−S

(1)
3 + g/σ 2

))]
cos σ t.




(3.7)

The modal system with (3.7) can be asymptotically integrated for steady-state
solutions by the combining the Bubnov–Galerkin method with asymptotic expansions.
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The procedure was described in some detail by Faltinsen et al. (2000). The result is

a1 = A cos σ t + Ā sin σ t + {[A(n1(−A2 + 3Ā) + n2(B
2 − B̄2)) + 2n2BĀB̄] cos 3σ t

+ [Ā(n1(Ā
2 − 3A2) + n2(B

2 − B̄2)) − 2n2ABB̄] sin 3σ t}/
(
9 − σ̄ 2

1,0

)
+ o(ε),

b1 = B̄ cos σ t + B sin σ t + {[B̄(n̄1(−B̄2 + 3B2) + n̄2(Ā
2 − A2)) + 2n̄2ABĀ] cos 3σ t

+ [B(n̄1(B
2 − 3B̄2) + n̄2(Ā

2 − A2)) − 2n̄2AĀB̄] sin 3σ t}/
(
9 − σ̄ 2

0,1

)
+ o(ε),




(3.8a)

a2 = p0(A
2 + Ā2) + h0(A

2 − Ā2) cos 2σ t + 2h0AĀ sin 2σ t + o(ε),

b2 = p̄0(B̄
2 + B2) + h̄0(B̄

2 − B2) cos 2σ t + 2h̄0B̄B sin 2σ t + o(ε),

c1 = p1(AB̄ + ĀB) + h1(AB̄ − ĀB) cos 2σ t + h1(ĀB̄ + AB) sin 2σ t + o(ε),


 (3.8b)

a3 = {N1[(A
3 + AĀ2) cos σ t + (A2Ā + Ā3) sin σ t] + P3 cos σ t}/(1 − σ̄ 3,0)

+N2{(−A3 + 3AĀ2) cos 3σ t + (Ā3 − 3A2Ā) sin 3σ t}/
(
9 − σ̄ 2

3,0

)
+ o(ε),

c21 = {(N3Ā
2B̄ + (N4 − N3)ABĀ + N4A

2B̄) cos σ t + (N3A
2B

+(N4 − N3)AB̄Ā + N4Ā
2B) sin σ t}/(1 − σ̄ 2,1) + N5{(Ā2B̄ + 2ABĀ

− A2B̄) cos 3σ t + (BĀ2 − 2AĀB̄ − A2B) sin 3σ t}/(9 − σ̄ 2,1) + o(ε),

c12 = {(N̄3AB2 + (N̄4 − N̄3)BĀB̄ + N̄ 4AB̄2) cos σ t + (N̄3B̄
2Ā

+(N̄4 − N̄3)BB̄ + N̄4B
2Ā2) sin σ t}/

(
1 − σ̄ 2

1,2

)
+ N̄ 5{(AB2 + 2ĀBB̄

− AB̄2) cos 3σ t + (ĀB2 − 2ABB̄ − ĀB̄2) sin 3σ t}/
(
9 − σ̄ 2

1,2

)
+ o(ε),

b3 = {N̄1[(B̄
3 + B̄B2) cos σ t + (BB̄2 + B3) sin σ t] + P4 cos σ t}/

(
1 − σ̄ 2

0,3

)
+ N̄ 2{(−B̄3 + 3B2B̄) cos 3σ t + (B3 − 3BB̄2) sin 3σ t}/

(
9 − σ̄ 2

0,3

)
+ o(ε)




(3.8c)

with

p0 =
d4 − d5

2σ̄ 2
2,0

, p̄0 =
d̄4 − d̄5

2σ̄ 2
0,2

, h0 =
d4 + d5

2
(
σ̄ 2

2,0 − 4
) , h̄0 =

d̄4 + d̄5

2
(
σ̄ 2

0,2 − 4
) ,

p1 =
d̂1 + d̂2 − d̂3

2σ̄ 2
1,1

, h1 =
d̂1 + d̂2 + d̂3

2
(
σ̄ 2

1,1 − 4
) ,

and

n1 = 1
2
d2 + h0

(
3
2
d1 + 2d3

)
,

n2 = 1
4
(d6 + d8 + d10 + d11) + h1

(
1
2
d7 + 2d9 + d12

)
,

N1 = − 3
4
q2 + 1

4
q4 + h0

(
− 1

2
q1 − 2q3 + q5

)
− q1p0,

N2 = 1
4
q2 + 1

4
q4 + h0

(
1
2
q1 + 2q3 + q5

)
,

N3 = − 1
4
q7 − 1

4
q9 + 3

4
q12 − 1

4
q13 + h0

(
1
2
q8 + 2q10 − q15

)
− q8p0 + h1

(
− 1

2
q6 − 2q11 + q14

)
,

N4 = − 3
4
q7 − 3

4
q9 + 1

4
q12 + 1

4
q13 + h0

(
− 1

2
q8 − 2q10 + q15

)
− q8p0

+h1

(
− 1

2
q6 − 2q11 + q14

)
− q6p1,

N5 = 1
4
q7 + 1

4
q9 + 1

4
q12 + 1

4
q13 + h0

(
1
2
q8 + 2q10 + q15

)
+ h1

(
1
2
q6 + 2q11 + q14

)
,

where

σ̄ 2
i,j =

σ 2
i,j

σ 2
(3.9)
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and n̄i , N̄ i can be obtained by adding bars over di, pi and hi in the expressions for ni

and Ni .
The terms in the expressions for a1 and b1 are of a different order. The primary

amplitudes A, Ā, B̄ and B are associated with O(ε1/3) while the expressions in the
following lines are O(ε). The primary amplitudes can be found by inserting (3.8a)
into (3.3a) and (3.3b) and collecting the terms proportional to cos σ t and sin σ t . This
gives the following secular system of algebraic equations:

A
(
(σ̄ 2

1,0 − 1) + m1(A
2 + Ā2) + m2B̄

2 + m3B
2
)

+ (m2 − m3)ĀB̄B −P1= 0,

Ā
(
(σ̄ 2

1,0 − 1) + m1(A
2 + Ā2) + m2B

2 + m3B̄
2
)

+ (m2 − m3)ABB̄ = 0,

B̄
(
(σ̄ 2

0,1 − 1) + m̄1(B
2 + B̄2) + m̄2A

2 + m̄3Ā
2
)

+ (m̄2 − m̄3)ĀAB −P2= 0,

B
(
(σ̄ 2

0,1 − 1) + m̄1(B
2 + B̄2) + m̄2Ā

2 + m̄3A
2
)

+ (m̄2 − m̄3)ĀAB̄ = 0,




(3.10)

where

m1 = − 1
2
d2 − d1

(
p0 − 1

2
h0

)
− 2h0d3,

m2 = − 3
4
d6 + 1

4
d10 − 3

4
d8 + 1

4
d11 − d7p1 − h1

(
1
2
d7 + 2d9 − d12

)
,

m3 = − 1
4
d6 + 3

4
d10 − 1

4
d8 − 1

4
d11 − h1

(
1
2
d7 + 2d9 − d12

)

 (3.11)

and m̄i, i = 1, 2, 3 are obtained from (3.11) by adding bars over di, pi and hi . The
system of nonlinear algebraic equations (3.10) generalizes the single secular equation
obtained by Faltinsen et al. (2000) (see their equation (6.8) containing only m1)
to the three-dimensional case. It does not always have solutions and may have
multiple solutions. This depends on the values of mi and m̄i . Faltinsen & Timokha
(2001) emphasized also that contrary to standard Moiseyev-type analysis the secular
equations derived from the modal theories include coefficients which vary not only
with h (r for a rectangular cross-section), but also with σ . This is caused by our
Bubnov-Galerkin technique which does not require the Moiseyev detuning σ̄ 2

1,0 − 1 =

O(ε2/3). This situation was extensively discussed by Faltinsen & Timokha (2001)
in the context of applicability of the asymptotic methods when σ drifts slightly
away of the primary resonance. This discussion was related to two-dimensional
sloshing with critical depth h1 when m1 → 0. While the standard Moiseyev technique
establishes in this case a linear response, the secular equations with varying m1 capture
nonlinearities away from a small vicinity of the main resonance. In many cases an
improved agreement with experimental data is obtained.

Another important remark is that by assuming slowly varying amplitudes A, Ā, B

and B we can derive from our modal system a dynamic system, where the left-
hand sides of (3.10) become its right-hand sides (in normal form). This system is
equivalent to the Hamiltonian systems already derived by Feng & Sethna (1989)
and Bridges (1986), but with other forcing terms and the coefficients depending
on the excitation frequency (the Moiseyev detuning). However, focusing exclusively on
this system neglects contributions of higher modes and their strong dependence on
initial conditions. Another important point is that some terms of O(ε) give, in real
calculations, significant contributions to sloshing relative to formal dominant terms.
This point was exemplified by Faltinsen (1974), La Rocca et al. (1997) and Faltinsen
et al. (2000). Gavrilyuk, Lukovsky & Timokha (2000) also showed an effect of these
terms on the mobility of the nodal line.
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The following analysis assumes r = 1, i.e. a square-base tank. This means

σ̄ 1

def
= σ̄ 1,0 = σ̄ 0,1, σ̄ i,j = σ̄ j,i , d̄ i = di, m1 = m̄1, m2 = m̄2, m3 = m̄3, (3.12)

where mi are functions of h and σ . Resonant bifurcations due to perturbed r as
investigated by Bridges (1985) will not be studied.

3.3. Stability of the steady-state motions

After calculation of periodic solutions a1, b1, . . . , b3 we can apply any one of numerous
methods to study their stability. One way is to implement the Floquet–Lyapunov
scheme (Lukovsky 1990), which assumes perturbations of all the modes. However,
we assume that only perturbations in a1 and b1 are important, introduce the slowly
varying time τ = ε2/3σ t/2, the Moiseyev asymptotics σ̄ 2

1 − 1 = O(ε2/3) and express
the infinitesimally perturbed dominant solutions as

a1 = (A + α(τ )) cos σ t + (Ā + ᾱ(τ )) sin σ t + o(ε1/3),

b1 = (B̄ + β̄(τ )) cos σ t + (B + β(τ )) sin σ t + o(ε1/3),

}
(3.13)

where A, Ā, B and B̄ are the solutions of (3.10) and α, ᾱ, β and β̄ are their relative
perturbations depending on τ . A similar procedure is applicable to the Hamiltonian
systems governing slow-time evolution of the primary amplitudes. Inserting (3.13)
into (3.3)–(3.4), collecting terms of the lowest asymptotic order and keeping linear
terms in α, ᾱ, β and β̄ leads to the following linear system of ordinary differential
equations:

c′ + [δc] + Cc = 0, (3.14)

where an auxiliary damping term δ > 0 is incorporated in the square brackets. The
results below are obtained in the limit δ → 0. Further, c = (α, ᾱ, β, β̄)T and the matrix
C has the following elements:

c11 = −[2AĀm1 + (m2 − m3)BB̄], c12 = −
[
σ̄ 2

1 − 1 + m1A
2 + 3m1Ā

2 + m2B
2 + m3B̄

2
]
,

c13 = −[2ĀBm2 + (m2 − m3)AB̄], c14 = −[2ĀB̄m3 + (m2 − m3)AB],

c21 = σ̄ 2
1 − 1 + 3m1A

2 + m1Ā
2 + m2B̄

2 + m3B
2, c22 = 2AĀm1 + (m2 − m3)BB̄,

c23 = 2ABm3 + (m2 − m3)ĀB̄, c24 = 2AB̄m2 + (m2 − m3)ĀB,

c31 = 2m2AB̄ + (m2 − m3)BĀ, c32 = 2m3ĀB̄ + (m2 − m3)AB,

c33 = 2m1BB̄ + (m2 − m3)AĀ, c34 = σ̄ 2
1 − 1 + m1B

2 + 3m1B̄
2 + m2A

2 + m3Ā
2,

c41 = −[2m3AB + (m2 − m3)ĀB̄], c42 = −[2ĀBm2 + (m2 − m3)AB̄],

c43 = −
[
σ̄ 2

1 − 1 + 3m1B
2 + m1B̄

2 + m2Ā
2 + m3A

2
]
, c44 = −[2BB̄m1 + (m2 − m3)AĀ].

The stability of a fixed-point solution can be evaluated by studying (3.14). Its
fundamental solution depends on the eigenvalue problem det[(λ + δ)E + C] = 0.
Computations (using the analytical manipulator of Waterloo Maple 6) give the
following characteristic polynomial:

(λ + δ)4 + c1(λ + δ)2 + c0 = 0, (3.15)

where c0 is the determinant of C and c1 is a complicated function of the elements
of C. Since the eigenvalues λ can be expressed as −δ ± √

x1,2 (x1,2 are solutions of

the equation x2 + c1x + c0 = 0), the asymptotic stability of the fixed-point solutions
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Figure 4. Graphs representing mi(h, σ1), i = 1, 2, 3 and some of their linear combinations
versus depth/breadth ratio h for a square-base basin. The point H1 (m1 = 0, h1 = 0.337 . . .)
denotes the ‘soft/hard’ spring change for the ‘planar’ steady-state waves (3.20). The point H2

(m1 = m3) defines another critical depth h2 = 0.274 . . . , where the solvability condition (3.26)
of the secular equations for the ‘swirling’ mode is not satisfied. The point H3 denotes the depth
h3 = 0.27 . . . where the ‘soft/hard’ spring change in the response of a ‘square’-like mode (3.21)
occurs, and the critical point H4 denotes the depth h4 = 0.17 . . . , where m2 = 0. In addition,
the auxiliary point E corresponds to h5 = 0.4 . . . obtained from the condition m2 = 3m1.

means for δ → 0 that

c0 > 0, c1 > 0, c2
1 − 4c1 > 0. (3.16)

Here c0 vanishes at the turning-point solutions and at the Poincaré bifurcation points.
The zeros of the discriminant c2

1 − 4c1 are Hopf-bifurcation points where the real
parts of a pair of complex-conjugate zeros of c0 become positive.

In general, P1 �= 0 and P2 �= 0 for a combined sway/surge and roll/pitch forcing.
However, the examination below considers two model situations: P1 �= 0, P2 = 0 (com-
bined surge/pitch or ‘longitudinal’ excitation) and P1 = P2 �= 0 (diagonal excitation).

3.4. Steady-state resonant sloshing due to longitudinal excitations
(r = 1, P1 �= 0, P2 = 0)

The amplitudes A, Ā, B̄ and B of steady-state solutions depend on mi = mi(h, σ ), i =
1, 2, 3. Assuming the resonance condition σ ≈ σ1 implies that the steady-state
solutions are mainly functions of h. There are critical values of hi causing (3.10) to
have a singular character (insoluble, leading to bifurcation points or hydrodynamically
unstable solutions etc.). Some preliminary discussions will be made using figure 4,
showing mi(h, σ1) (and some of their linear combinations) versus h for surge/pitch
(longitudinal) excitations. These critical depths are denoted as hi (points Hi in
the graphs). We note that mi(h, σ1) are approximately constant for 1 � h and
vary slowly with h for 1> h > h1. Here h1 = 0.337 . . . is associated with the change
from a soft to hard spring type of ‘planar’ wave response (depth h1 came from
the analysis of two-dimensional sloshing in a rectangular tank by Fultz 1962;
Waterhouse 1994; Faltinsen et al. 2000). Lower depths introduce the critical
depths h2 = 0.274 . . . (point H2, m1 = m3), h3 = 0.27 . . . (point H3, m1 + m3 = 0) and
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h4 = 0.17 . . . (point H4, m2 = 0). Some remarks on which types of steady-state waves
are expected for those critical depths will be made below. However, since a two-
dimensional sloshing model assuming a single dominant β1,0 has limited applicability
for those depths with increasing forcing, these conclusions are of a preliminary
character and a series of special studies is required to describe quantitatively both
the passage from finite to shallow depths and from extremely small to larger forcing
amplitudes as done by Faltinsen & Timokha (2001) and Faltinsen & Timokha (2002a)
for ‘planar’ resonant sloshing.

Taking into account (3.12), multiplying the first and second equations of (3.10) by
Ā and A respectively and subtracting the resulting equations gives

(m2 − m3)
[
AĀ(B̄2 − B2) + BB̄(Ā2 − A2)

]
= P1Ā. (3.17)

Proceeding in a similar way with the third and fourth equations by multiplying by B

and B̄ respectively yields

(m2 − m3)
[
AĀ(B̄2 − B2) + BB̄(Ā2 − A2)

]
= 0. (3.18)

The graphs of mi(h, σ1) in figure 4 confirm that m2 − m3 �= 0 under resonance
condition σ ≈ σ1. Since P1 �= 0 and (3.17), (3.18) have equal left-hand sides, we deduce
that Ā = 0. Substituting Ā= 0 into (3.18) and using the first equation of (3.10) gives
the following solvability condition of the system (3.10):

Ā = 0, A �= 0, BB̄ = 0. (3.19)

This solvability condition yields three, and only three, possible solutions of (3.10),
for which the amplitude A of the directly excited mode f

(1)
1 is always non-zero.

Corresponding steady-state waves are
(i) ‘planar’

f (x, y, t) = Af
(1)
1 (x) cos σ t + o(ε1/3), (3.20)

occurring when A �= 0 and Ā = B = B̄ = 0,
(ii) ‘square’-like

f (x, y, t) =
[
Af

(1)
1 (x) ± B̄f

(2)
1 (y)

]
cos σ t + o(ε1/3)

=


A

±
1

(
f

(1)
1 (x) − f

(2)
1 (y)

)︸ ︷︷ ︸
S1

1 (x,y)

+B
±
1

(
f

(1)
1 (x) + f

(2)
1 (y)

)︸ ︷︷ ︸
S1

2 (x,y)


 cos σ t + o(ε1/3) (3.21)

occurring for A �= 0 and Ā = B = 0, B̄ �= 0, and, finally,
(iii) ‘swirling’

f (x, y, t) = Af
(1)
1 (x) cos σ t ± Bf

(2)
1 (y) sin σ t + o(ε1/3) (3.22)

occurring for A �= 0 and B �= 0, B̄ = Ā = 0. The reason why (3.22) describes ‘swirling’
is that the x- and y-dependent terms are 90◦ out of phase. The ± in front of the
amplitude component B in (3.22) means clockwise or counterclockwise ‘rotation’.
Since a ‘square’-like wave corresponds to a nearly diagonal standing wave, ± in
(3.21) describes the possibility that the waves can occur approximately along either
of the two diagonals. Both signs are mathematically possible. This means that initial
conditions and transient phase will determine the sign.
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Figure 5. Steady-state wave amplitude response A of a1 due to horizontal excitation along the
Ox-axis versus σ/σ1. The calculations were made for h = 0.508 and H = 0.0078 related to our
model tests. Bold solid lines denote the stable steady-state motions. The secondary resonance by
the secondary modes a1 and b1 (condition σ2,0 = 2σ ) is estimated at σ/σ1 = i2 = 0.737 . . . . The
secondary resonance by the mode c11 (condition σ1,1 = 2σ ) occurs at σ/σ1 = i11 = 0.6136 . . . .
The coefficient m1(0.508, σ ) becomes zero at σ/σ1 = 0.867 . . . . (a) The response of the ‘planar’
motions (branches P1P and PP2). They are unstable between the pairs of the auxiliary curves
γm1

, γ3m1
and γm2

, γm3
. For h > h5 this unstable zone is defined by the ordinates of T and B .

Since m2 < 3m3 for h < h5, the left bound will then be defined by the ordinate of E and
the corresponding stable sub-branch becomes P1E. (b) Steady-state wave amplitude response
of the ‘square’-like waves (3.21) represented by the component A (branches S1S and SE).
(c) The amplitude component A for ‘swirling’ waves (branches R1R and RB). (d) The final
representation of stable and unstable periodic solutions and compares it with experimental
observations.

Since A �= 0 for all the steady-state solutions (i)–(iii), we can in the following treat
the amplitude response of the periodic solutions in the (σ/σ1, |A|)-plane. An example
for h = 0.508, H = 0.0078 (related to our model tests) is presented in figure 5(a–d).

The ‘planar’ waves (3.20) were recently re-examined by Faltinsen et al. (2000) by
means of a similar modal technique. It related the analysis to the single secular
equation

A
((

σ̄ 2
1 − 1

)
+ m1A

2
)

= P1. (3.23)

This equation defines two branches in the (σ/σ1, |A|)-plane, which have ‘soft/hard’
spring behaviour for (h > h1)/(h < h1) respectively. A typical ‘soft’-like response is
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Figure 6. The steady-state ‘planar’ wave amplitude response (σ/σ1, A) versus h. Horizontal
excitation along the Ox-axis with H = 0.0078. Bold solid lines denote stable steady-state
‘planar’ sloshing. Secondary resonance conditions are defined in figure 5. (a) h = 0.4 with
i2 = 0.762, i11 = 0.627 and m1(0.4, σ ) = 0 for σ/σ1 = 0.93; (b) h1 < h < h5 (calculations were
made for h = 0.36 with i2 = 0.7766, i11 = 0.63371 and m1(0.36, σ ) = 0 for σ/σ1 = 0.970762);
(c) h2 < h < h1 (calculations were made for h = 0.3 with i2 = 0.80524, i11 = 0.6463 and
m1(0.3, σ ) = 0 for σ/σ1 = 1.0576); (d) h4 < h < h2 (calculations were made for h = 0.2 with
i20 = 0.87366, i11 = 0.67171 and m1(0.2, σ ) = 0 for σ/σ1 = 1.312635).

demonstrated in figure 5(a). Solutions of (3.23) are illustrated by two branches P1P

and P2P meeting each other at infinity. Faltinsen (1974) established that solutions
exhibited by those branches are unstable between two auxiliary curves γm1

: σ̄ 2
1 − 1 +

m1A
2 = 0 and γ3m1

: σ̄ 2
1 −1+3m1A

2 = 0 with the turning point T the intersection point
of γm2

and P1P . However, this analysis assumed only two-dimensional perturbations.
Considering stability condition (3.16) one finds analytically an additional unstable
zone between the two other auxiliary curves γm2

: σ̄ 2
1 − 1 + m2A

2 = 0 and γm3
: σ̄ 2

1 −
1 + m3A

2 = 0. Figure 4 shows that m3 > 0 for all the depths, while m2 changes sign
at h4 = 0.17 . . . . This means that the curve γm3

always demonstrates a ‘hard’-like
behaviour and intersects the branch P2P at the point B . The curve γm2

has instead
for h < h4 a ‘soft’-like character. In addition, it is situated between γm1

and γ3m1
for

h > h5 and lies under γ3m1
for h < h5, where h5 is associated with the condition

3m1 = m2 (point E in figure 4). This means that for h > h5 the stable planar steady
regimes are associated with the sub-branches P1T and BP2. If h4 < h < h5, E is left of
T and the left-hand stable sub-branch is P1E. Note that a similar modal analysis of
‘planar’ sloshing in vertical circular cylindrical tanks gives an unstable zone between
T and B (see Miles 1984a, b and Gavrilyuk et al. 2000). Figure 6(a–d) presents the
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evolutions of ‘planar’ response versus the mean depth and show the characteristic
behaviour as previously discussed.

We would again like to stress that our modal technique uses the dependence of mi

on σ . This means that some of the functions mi or some of their linear combinations
may become zero for depths close but not equal to the critical depths hj for a
small difference between σ and σ1. Further, even if we consider a critical depth hi ,
the corresponding mi or their linear combinations become non-zero away from σ1.
This point was extensively discussed by Faltinsen et al. (2000) for two-dimensional
sloshing. The calculations made for the depths in figure 5(a) gave the critical value
σ/σ1 = 0.867 where m1(0.508, σ/σ1) = 0.

Conditions Ā = B = 0, A �= 0, B̄ �= 0 eliminate two equations of the system (3.10).
The remaining pair needs the additional solvability condition

m1 �= m2, m1 �= 0. (3.24)

Taking into account the numerical data in figure 4 we see that (3.24) fails only in a
small vicinity of h1 for σ ≈ σ1. This reduces (3.10), (3.12) to the following form:

A
[(

σ̄ 2
1 − 1

)
+ (m1 + m2)A

2
]
=

m1

m1 − m2

P1, B̄2 = −
(
m2A

2 +
(
σ̄ 2

1 − 1
))

/m1 � 0. (3.25)

Figure 5(b) gives the ‘square’-like wave amplitude response |A| of the primary

mode f
(1)
1 for h = 0.508 (solution (ii)). Since m1, m2 < 0 for this depth and only

real B̄ has a physical meaning, the inequality in (3.25) indicates that the solutions
can appear only under the auxiliary curve γm2

. Calculations establish the unstable
sub-branch ES emerging from E (the bifurcation point between solutions (3.20) and
(3.21)). The branch SS1 is divided by the point C (Hopf bifurcation) into stable and
unstable subsets. A qualitative picture of which branches are expected for smaller
depths h < h1 is shown in figure 7(a–d).

Conditions Ā = B̄ = 0, A �= 0, B �= 0 lead to a system of two equations needing
the solvability condition

m1 �= m3 and m1 �= 0. (3.26)

This means that the third-order modal analysis may fail near h1 and h2 (figure 4).
Under conditions (3.26) the secular system takes the form

A
[(

σ̄ 2
1 − 1

)
+ (m1 + m3)A

2
]

= m1P1/(m1 − m3), B2 = −
(
m3A

2 +
(
σ̄ 2

1 − 1
))

/m1 � 0.

(3.27)

A typical ‘swirling’-like wave response of A versus σ/σ1 is shown in figure 5(c) for
h = 0.508. It establishes the bifurcation point B defined by the intersection of γm3

and the branch PP1 corresponding to the ‘planar’ response. However, corresponding
branch BR is unstable (as for a vertical circular cylinder, see Miles 1984b or Gavrilyuk
et al. (2000). Figure 8(a–d) illustrates how the ‘swirling’ response changes with
decreasing h. The results show that ‘swirling’ may become impossible for sufficiently
small h, because its effective domain undergoes an upshift away from the main
resonance, where the steady-state ‘planar’ wave of lower amplitude exists.

Finally, figures 5(d) and 9 include all the stable branches for h = 0.508 and 0.34.
Since h = 0.34 ≈ h1 in the case of figure 9, m1 may become zero near σ/σ1 = 1
and therefore one of the solvability conditions is not fulfilled there, and the theory
may give wrong predictions in a very small vicinity of the main resonance, where
theoretical prediction in figure 9 indicates possible irregular waves.
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Figure 7. The steady-state wave amplitude component A of ‘square’-like waves versus σ/σ1

for different h. Horizontal excitation along the Ox-axis with H = 0.0078. (a–d) The same fluid
depths as in figure 6(a–d). Solid thin lines denote stable ‘planar’-waves, while bold solid lines
imply stable ‘square’-like waves. The figures demonstrate that ‘square’-like waves become the
most important for small depths (h < h3 = 0.27 . . .).

The change with h of the frequency domains for the steady-state solutions is
summarized in figure 10. It shows that the frequency domain of chaotic (irregular)
waves vanishes with decreasing h. Figure 11 demonstrates that the frequency domain
where three-dimensional phenomena are expected increases with the excitation
amplitude and resonant ‘planar’ waves will probably disappear for a critical amplitude.

3.5. Steady-state resonant sloshing due to diagonal excitation (r = 1, P1 = P2 �= 0)

Assuming P1 = P2 �= 0 the analytical computations of the previous subsection applied
to (3.10) gives the auxiliary equality (3.17) together with

(m2 − m3)
[
AĀ(B̄2 − B2) + BB̄(Ā2 − A2)

]
= BP1. (3.28)

Under the already mentioned inequality m2 �= m3 equations (3.17) and (3.28) lead to
the following solvability condition of (3.10):

B = −Ā, (m1 − m3)B(B̄2 − A2) = 0. (3.29)

When m1 �= m3 (figure 4 shows that equality m1 = m3 is fulfilled only at an isolated
depth h2 = 0.274 . . .) the solvability condition (3.29) defines, three and only three,
periodic resonant waves. We find it convenient to present them in the terms of ‘square’
modes, i.e.
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Figure 8. The steady-state wave amplitude component A of ‘swirling’ waves versus σ/σ1

for different h. Horizontal excitation along the Ox-axis with H = 0.0078. (a–d) The same
fluid depths as in figure 6(a–d). Solid thin lines denote stable sub-branches for ‘planar’ and
‘square’-like waves and bold solid lines imply stable ‘swirling’ waves motions. The figure shows
upshift of the frequency domain for ‘swirling’ waves away of the main resonance range with
decreasing fluid depth.

(i) ‘diagonal’ waves (pure ‘square’ mode S1
2 (x, y) to be nonlinearly excited)

f = B1S
1
2 (x, y) cos σ t + o

(
ε1/3
)

(3.30)

occurring for B = −Ā = 0, A = B̄
def
= B1,

(ii) ‘square’-like waves

f =
[
±A1S

1
1 (x, y) + B1S

1
2 (x, y)

]
cos σ t + o

(
ε1/3
)

(3.31)

describing joint cosine amplification of the pair S1
1 and S1

2 (here B1

def
= (A+B̄)/2, A1

def
=

(A − B̄)/2) occurring for B = −Ā = 0, A �= B̄ , and, finally
(iii) ‘swirling’ waves

f = B1S
1
2 (x, y) cos σ t ∓ A1S

1
1 (x, y) sin σ t + o(ε1/3) (3.32)

occurring for A1

def
= Ā = −B �= 0, B1

def
= A = B̄ .

Periodically forced mode S1
2 emerges as a necessary component of the solutions

(i)–(iii) and therefore B1 �= 0. This point enables us to treat the nonlinear response
in the (σ/σ1, |B1|)-plane. The analysis below is mathematically equivalent to the
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Figure 9. Comparisons between experimental observations and theoretical predictions of
different types of stable periodic (steady-state) wave motions. Longitudinal excitations with
h = 0.34, H = 0.0078. Theoretical results and experimental classification are presented on the
bottom and top respectively.
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corresponding scheme described for longitudinally excited steady-state sloshing, and
so we will not present the details.

‘Diagonal’ waves (3.30) (B = −Ā = 0, A = B̄ = B1) are calculated from the single
secular equation

B1

(
σ̄ 2

1 − 1 + (m1 + m2)B
2
1

)
= P1 (3.33)
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Figure 11. Comparisons between experimental observations and theoretical predictions of
different types of stable periodical (steady-state) wave motions. Longitudinal excitations with
h = 0.508, H = 0.025.

governing the amplitude of S1
2 (see (3.30)). Since m1 + m2 changes sign at h = h3

(see figure 4), corresponding branches in the (σ/σ1, |B1|)-plane imply ‘soft’-like spring
behaviour for h > h3 and ‘hard’-like spring behaviour for h < h3. Branches D1D and
DD2 in figures 12(a, b) exemplify this response for two depths (h = 0.508 and 0.34)
related to our experimental series. It can be shown analytically that corresponding
steady-state solutions become unstable for the segments of these branches lying
between pairs of auxiliary curves γm1+m2

, γ3(m1+m2) and γ3m1−m2
, γm1−m2+m3

defined by the
equations σ̄ 2

1 − 1 + (m1 + m2)B
2
1 = 0, σ̄ 2

1 − 1 + 3(m1 + m2)B
2
1 = 0, σ̄ 2

1 − 1 + (3m1 − m2)
B2

1 = 0 and σ̄ 2
1 − 1 + (m1 − m2 + 2m3)B

2
1 = 0 respectively. These curves intersect the

branches at the turning point T and the two Poincaré-bifurcation points E and B ,
which originate from the wave solutions (3.31) and (3.32), respectively.

‘Square’-like waves (3.31) appear with B = −Ā = 0, A �= B̄ . Taking into account
that A = A1 + B1, B̄ = B1 − A1 reduces the secular system (3.29) to the form

B1

(
σ̄ 2

1 − 1 + (m1 + m2)B
2
1 + (3m1 − m2)A

2
1

)
= P1,

σ̄ 2
1 − 1 + (m1 + m2)A

2
1 + (3m1 − m2)B

2
1 = 0.

}
(3.34)

This system needs the solvability condition

m1 + m2 �= 0, m1 �= m2, (3.35)

which is not satisfied except for two isolated depths h = h2 and h3 (figure 4). If (3.35)
is satisfied, the system (3.34) can be re-written as

B1

(
σ̄ 2

1 − 1 + 4m1B
2
1

)
= P1

m1 + m2

2(m2 − m1)
,

A2
1 = −

(
σ̄ 2

1 − 1 + (3m1 − m2)B
2
1

)
/(m1 + m2) � 0.


 (3.36)

The system (3.36) defines the pair of conjugated solutions B1, ±A1, where ± are
associated with two Oy-symmetric directions. Calculations performed for various
depths from h = 1 to h = 0.15 showed that (ii) is always unstable. However, we
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Figure 12. The steady-state wave amplitude response B1 versus σ/σ1 for diagonal forcing
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Figure 13. (a) A photo of the experimental setup and (b) the top view of the tank with
positions of the wave probes. All the dimensions in mm.

present the corresponding branches S1S and SE in figure 12(a, b). Here E is the
Poincaré bifurcation point between ‘diagonal’ and ‘square’-like waves.

‘Swirling’ waves (3.32) (Ā = −B �= 0, A = B̄) are governed by the system

B1

(
σ̄ 2

1 − 1 + (m1 + m2)B
2
1 + (m1 − m2 + 2m3)A

2
1

)
= P1,

σ̄ 2
1 − 1 + (m1 + m2)A

2
1 + (m1 − m2 + 2m3)B

2
1 = 0

}
(3.37)

under the solvability condition

m1 + m2 �= 0, m2 �= m3.

This condition excludes from the consideration the isolated critical depth h3 (figure 4)
where m1 + m2 = 0 and reduces (3.37) to the form

B1

(
σ̄ 2

1 − 1 + 2(m1 + m3)B
2
1

)
=

m1 + m2

2(m2 − m3)
P1,

A2
1 = −

(
σ̄ 2

1 − 1 + (m1 − m2 + 2m3)B
2
1

)
/(m1 + m2) � 0


 (3.38)

It has also the pair of conjugated solutions B1, ±A1, where plus or minus mean
physically clockwise/counterclockwise ‘rotation’. The amplitude component B1 versus
σ/σ1 is represented in figures 12(a, b) by the branches BR and RR1. Stability analysis
shows numerically two Hopf bifurcations on the branch RR1, denoted as F1 and F2,
when h > h1. ‘Swirling’ waves corresponding to solutions between these points become
unstable. This instability zone disappears for h < h1 and therefore F1 coincides with F2

at h = h1 as shown in figure 12(b). Numerical examination of the case in figure 12(a)
establishes that probably a small dissipation here can eliminate (or dramatically
reduce) the instability between F1 and F2. The reason is that computed c2

1 − 4c0 is of
order 10−6 in this range.

4. Model tests
4.1. Setup and observations

We conducted a series of model tests on resonant sloshing with the aim of
classifying all the possible nonlinear wave motions. Both video recordings and actual
measurements were performed. A photo of the setup is presented in figure 13(a).
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(a) (b) (c)

L1/3 L1/3 L1/3

Figure 14. Photos from the experimental series demonstrating local phenomena near the wall
occurring for three-dimensional waves. Actual width of the photos is approximately 1/3 of the
tank length L1.

The tank had a square base with breadth/width 59 cm and a height of 80 cm.
The tank height was sufficiently large to avoid tank roof impact due to sloshing
in the series documented. It was ensured that the walls and bottom of the tank
were stiff enough to avoid hydroelastic effects. Fresh water was used. The non-
dimensional water depths (depth/breath ratio) were h = 0.508 (related to h = 0.5
in Chen & Arai 1995), h = 0.34 (near the critical depth for the ‘planar’ waves and
h = 0.27 (near an artificial bound for the applicability of the single dominant theory
of two-dimensional sloshing established by Faltinsen et al. (2000)). Some isolated
tests were made with other depths. The setup allowed changes in the excitation
direction. Most experiments were for horizontal longitudinal (along the Ox-axis) and
diagonal excitations as indicated on the top view in figure 13(b). The typical excitation
amplitude was about 0.5 cm. This gives dimensionless H = 0.0078 for longitudinal
forcing and H1 = 0.0078/

√
2, H2 = 0.0078/

√
2 for diagonal excitations, where Hi are

defined by (3.6). A few measurements were made with higher forcing amplitudes.
The wave probes 1–6 were of two different types (figure 13b). Probes 1 and 6 are
made of thin wires with 0.5 mm diameter and placed a distance 40 mm from the wall.
The experimental error due to meniscus effects for wave probes 1 and 6 is less than
1 mm. The other probes are made of copper tape. They are placed directly on the
tank walls and have a total width of approximately 20 mm. Since experiments were
done prior to the theoretical studies and the authors were not familiar with possible
theoretical predictions, the test series were for a wide range of excitation frequencies
in the vicinity of primary resonance (0.86 < σ/σ1 < 1.08).

Visual observations and video recordings always showed three-dimensional waves
in the small vicinity of the lowest natural frequency. Two-dimensional/diagonal
sloshing was observed for longitudinal/diagonal excitation when the forcing frequency
was outside this frequency domain. The experiments lasted for about 120 forcing
periods and clear steady-state regimes were not achieved even for this long series.
The transient behaviour during the first 80 s changed between being dominated
by ‘planar’/‘diagonal’, ‘square’ and ‘swirling’ wave modes. This long transient
behaviour was observed earlier for two-dimensional sloshing by Faltinsen et al.
(2000). The reason is very small dissipation. The wave profiles were particularly
steep near the corners and, although the forcing amplitude was sufficiently small,
all the three-dimensional waves demonstrated significant local near-wall phenomena
appearing as run-up at the walls accompanied by splashing/overturning with possible
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Figure 15. Example of measurements at the wave probes 1 and 6 and corresponding
parametric curve (‘measured probe 1’(t), ‘measured probe 6’(t)) for ‘planar’ waves. The tank
was longitudinally excited with h = 0.508, H = 0.0078 and σ/σ1 = 0.92.

drop formation. Typical instantaneous wave shapes near the walls are shown in
figure 14(a–c). The situation was very similar to the description by Abramson (1966)
and recently by Royon et al. (2002) (for a vertical circular cylindrical tank).

4.2. Classification by primary amplitudes

The observed nonlinear phenomena have been classified by comparing the lowest-
order theoretical predictions of steady-state resonant motions with video recordings
and measurements. Due to the importance of transients, only the last 30–50 s of
measurements might under certain circumstances be used to indicate what type of
steady-state motion was achieved. Since video recordings demonstrated a significant
run-up in terms of a thin film of water at the wall, only wave probes 1 and 6 placed at
a small distance from the wall were involved in the analysis. Preliminary theoretical
predictions are made in terms of the primary modes f

(1)
1 (x) and f

(2)
1 (y) (or S1

2 (x, y) and
S1

1 (x, y)) and asymptotic solutions (3.20), (3.21), (3.22) and (3.30), (3.31), (3.32) correct
to O(ε1/3). The theory gives four possible scenarios for both types of excitations.
The longitudinal excitations exhibit (a) ‘planar’ two-dimensional waves occurring in
the plane of the horizontal excitation (solution (3.20)) exemplified in figure 15(a–c);
(b) ‘swirling’ waves (the surface wave crest moves along the tank wallsclockwise
or counterclockwise and the direction of its motion by changes 90◦ at the corner)
governed by the solution (3.22) shown in figure 16(a–c); (c) irregular waves widely
observed when either no appropriate stable steady-state solution for this excitations
frequency exists or due to the actual transients being so long that we could not clearly
distinguish possible steady-state solution, demonstrated in figure 17(a–c), and, finally,
rare in observations (d) ‘square’-like waves demonstrating nearly diagonal standing
waves (governed by (3.21)) shown in figure 18(a, b). A similar classification can be used
for diagonal excitation, but in this case ‘planar’ waves (3.20) are replaced by ‘diagonal’
motions governed by (3.30) and ‘square’-like waves may not be seen because they
are unstable. The examples in figure 15–18 are accompanied by symbolic theoretical
curves, which represent theoretical predictions based on approximation correct to
O(ε1/3) and compared with experiments in the (‘measured probe 1’(t), ‘measured
probe 6’(t))-plane. According to this approximation we expect a horizontal interval
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Figure 16. As figure 15 but for ‘swirling’ waves with σ/σ1 = 1.011.
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Figure 17. As figure 15 but for irregular waves with σ/σ1 = 0.945.
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in the case of ‘planar’ motions (top right in figure 15(c)), an ellipse (the loop) for
‘swirling’ top right of figure 16(c) and an inclined interval for ‘square’-like waves
in the bottom left and top right of figure 18(c). No theoretical prediction exists for
parametric curve in figure 17(c) for irregular motions.

The theoretical and experimental results for frequency domains of stable steady
solutions for longitudinal excitation (h = 0.508, H = 0.0078) are shown on the
bottom and the top of the (σ/σ1, |A|)-plane in figure 5(d). The theory predicts for
this case stable ‘planar’ and ‘swirling’ waves except when 0.955 � σ/σ1 � 0.983. No
stable periodic solutions exist in this frequency domain and irregular oscillations
are predicted. The figure shows good qualitative agreement between theory and
experiments for the excitation amplitude H = 0.0078 as well as for larger excitation
amplitude H = 0.025 in figure 11. Note that this increasing amplitude does not
change qualitatively the distribution of the frequency domains for different types of
wave motions. One should note that the theory for case h = 0.508 predicts stable
‘square’-like waves to co-exist with ‘planar’ waves. Since the ‘planar’ solution has
theoretically clearly the lowest amplitude and the experiments were for near-zero
initial conditions, it is most probable that a ‘square’-like wave was not physically
realized in the experiments. Since the ‘square’-like solutions are an attribute of lower
depths, we were strongly motivated to find them in observations for h = 0.34. This
depth is very close to the critical depth h1, where m1 = 0 and corresponding secular
equations have no solutions. However, in our approximation m1 is also a function of
σ and m1(0.34, σ ) �= 0 away from a small vicinity of σ1. The theoretical predictions
presented in figure 9 give a narrow zone near the main resonance where there is
not any stable periodic solution. Since m1 ≈ 0 in this zone, it is understandable that
the theoretical predictions may fail there. However, the theoretical and experimental
predictions are in good agreement away from this range. As explained by Faltinsen
& Timokha (2001) for two-dimensional sloshing, the discrepancy near h = h1, σ = σ1

can be corrected by accounting for secondary resonance effects. Only one experimental
series at σ/σ1 = 0.98 confirmed the existence of ‘square’-like waves. Corresponding
measured wave elevations are presented in figure 18(a, b). Additional work is required
to provide more systematic studies of this phenomenon in the frequency domain
indicated in figure 9.

We were also able to compare our theoretical results with experimental wave data
for the diagonal excitations. The comparisons of experimental and theoretical results
are presented in figure 12(a, b). There was generally good agreement except at the
points denoted by ‘?’ in the figures. These points corresponded to the case when
the theory predicts two stable solutions, namely ‘diagonal’ and ‘swirling’ waves. The
difference from the longitudinal excitation is that both solutions have comparable
amplitudes in this zone (accounting for components A1). While the ‘diagonal’ wave
has a large component B

diag

1 , the calculated values for ‘swirling’ waves give small
contribution of Bswirl

1 , but the corresponding Aswirl
1 component is approximately

equal to B
diag

1 . This means that both types of periodical solutions are physically and
mathematically possible when starting from a planar initial free-surface shape. The
experimental measurements give regular ‘beating’ waves in this zone, exemplified in
figure 19. We cannot, based on this, conclude which stable periodic solution will be
realized from zero initial conditions. This would require a much larger time series.
In addition, we cannot mathematically ignore possible stable steady-state aperiodic
waves. Additional theoretical and experimental investigations of this phenomenon
are needed.
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‘swirling’ modes. Diagonal excitation H = 0.0078, h = 0.508, σ/σ1 = 1.008. (a) The parametric
graph from the experiments. (b) Theoretical predictions in the framework of primary modes
O(ε1/3) (‘Primary’) and by the modal system (up to O(ε), ‘Modal’).

4.3. Experimental validation of the modal system correct to O(ε)

Although none of the experimental series established clear periodic solutions, we made
some effort to compare quantitatively the theoretical and experimental amplitudes.
Our emphasis was on ‘swirling’ modes. The numerical technique uses the asymptotic
approximation (3.8) to compute the appropriate initial conditions corresponding to
periodic solutions of the modal system (3.3), (3.4). Since these initial conditions
neglect the contribution of o(ε), the numerical integration by a Runge–Kutta method
demonstrates a small beating effect. Some typical behaviours in the (Probe 1, Probe 6)-
plane are shown in figures 20–22. Here parts (a) give experimental data and parts (b)
present results by our calculations (‘MODAL’). The elliptical curves ‘PRIMARY’
were drawn from predictions of leading modes. The figures confirm that although
terms o(ε1/3) are formally small, they contribute in practice up to 60% of the
wave response and make the modal method applicable for real simulations. This is
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Figure 21. As figure 20 but for longitudinal excitation σ/σ1 = 1.0109.
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especially true for diagonal forcing, where the maximum difference between modal
theory and experiments was 9%. However, we could not obtain similar agreement
with experimental data for longitudinal forcing. While the measured and calculated
wave elevations at Probe 6 give a maximum 9% difference, the measured data at
Probe 1 are always larger than the theoretical values. The discrepancy is largest for
smaller σ . When the theory indicates minimum amplitude A for the dominant mode
in ‘swirling’ motions, the experiment demonstrates increasing corresponding elevation
near the wall. The difference reaches a maximum of 30%. A possible explanation is
connected with the significant amplification of higher modes. This means that some
higher modes should be considered to have the same order as the primary dominant
in a similar way as done for two-dimensional sloshing by Faltinsen & Timokha (2001).
Another explanation is connected with run-up phenomena near the wall, which may
increase the measured data.

Our analysis of transient regimes showed that three-dimensional sloshing in the
initial time range depends dramatically on the initial condition. A simple explanation
of this may be made for ‘swirling’ modes when a small change of the initial conditions
will determine the direction of wave rotation. However, for excitation frequencies in
the effective domain of ‘planar’ and ‘diagonal’ waves (slightly away from primary
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Figure 23. Transient waves for diagonal excitation with h = 0.508, σ/σ1 = 1.1.
(a) Comparison of measured and computed data at Probe 1, (b) comparison at Probe 6.

resonance) the computed results are not significantly affected by initial conditions. We
demonstrate this for one case from the series with diagonal excitation in figure 23(a, b).
Even though the experiments show initial waves (actual sinusoidal forcing starts from
t = 6.85 s), the simulations with zero-initial conditions give good agreement with
experimental data.

5. Conclusions
The adaptive third-order modal approach by Faltinsen & Timokha (2001) was

modified to handle three-dimensional sloshing in a rectangular-base basin. The
assumptions are incompressible fluid, irrotational flow, no overturning waves and
no roof impacts. The free surface should intersect the tank walls perpendicularly. In
addition, the lateral and angular external forcing is sufficiently small and characterized
by the dimensionless parameter ε � 1. Our modal approach derived an infinite-
dimensional system of ordinary differential equations coupling nonlinearly time-
dependent (modal) functions βi,j describing time-evolution of corresponding natural
surface modes. The nonlinearity is of polynomial type. This is for instance consistent
with the third-order theory by Zakharov (1968). The adaptive modal theory may
account for amplification of an infinite number of the natural modes. Its limitations
for description of local phenomena like run-up and breaking waves and comparison
with Perko-like analytical schemes (La Rocca et al. 2000) are extensively discussed by
Faltinsen & Timokha (2002a).

The adaptive system is simplified for sloshing in a rectangular-base basin with
similar breadth and width and finite fluid depth. The simplification is based on
asymptotic ordering of βi,j assuming two primary dominating modes of O(ε1/3). This
ordering reduces the adaptive systems to a finite-dimensional nonlinear system for nine
modal functions. The nonlinear system is completed by an infinite-dimensional linear
system for the remaining modal functions. If cross-waves are not excited, it coincides
with the modal system of Faltinsen et al. (2000) derived for two-dimensional sloshing.
The two-dimensional results by Faltinsen et al. (2000) can be used as an indicator of
the limitation of our three-dimensional model in capturing the longitudinally excited
primary mode in terms of depth/breadth ratio h and forcing amplitude. If the forcing
amplitude is sufficiently small, h should be larger than 0.24.

The problem of resonant sloshing in a square-base basin with excitation frequency
close to the lowest natural frequency was examined. A Bubnov–Galerkin scheme
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combined with an asymptotic technique was implemented (Faltinsen et al. 2000)
to find steady-state waves. These gave an asymptotic approximation of periodic
solutions correct to O(ε). A secular system of nonlinear algebraic equations couples
the dominant amplitudes of the primary modes. It is formally analogous to the
secular system of Gavrilyuk et al. (2000) derived for sloshing in a circular basin due
to longitudinal (surge/pitch) forcing. The response depends on the three coefficients mi

in the system, which are functions of depth and excitation frequency. The coefficients
mi are approximately constant for h > 1 and vary very slowly for h1 < h < 1
(here h1 is the critical depth corresponding to the change from ‘hard’ to ‘soft’ spring
response of two-dimensional sloshing). Our modal system, can by introducing a
slow-time scale, be used for derivation of a two-dimensional system of ordinary
differential equations in a form similar to Bridges (1986) (free oscillations) and Feng
& Sethna (1989) (parametric excitation) but with other forcing terms. Similar to
sloshing in a circular-base tank, two steady-state responses occur in a square-base
basin, namely ‘planar’ (in the plane of excitation) and ‘swirling’ (rotary motions). In
addition, square geometry yields so-called ‘square’-like (nearly diagonal) steady-state
waves. Nearly diagonal waves were theoretically established by Bryant & Stiassnie
(1995) and Bridges (1987) for free fluid oscillations. Waterhouse (1995) presented
periodic solutions, which can also be interpreted as ‘square’-like motions. Finally,
diagonal-like waves were observed experimentally by Tomawa & Sueoka (1989) for
small fluid depths. Adopting a stability analysis scheme by neglecting perturbations in
non-leading modes (analogous to Faltinsen 1974; Miles 1984a; Bridges 1986), we were
able to calculate effective frequency domains for the different wave behaviour and find
critical depths where either the frequency domains of stable regimes or their wave
response may change dramatically. Summarized results are presented in figure 10.
For longitudinal (along the walls) excitation and h>h1 there is the same qualitative
structure as for resonant sloshing in a circular basin, namely the small neighbourhood
of the primary resonance consists of two zones, where stable ‘swirling’ and irregular
(no stable steady-state solutions) motions are realized. Stable ‘planar’ sloshing occurs
for excitation frequencies slightly away from the main resonance. This zone falls into
two non-connected regions, i.e. for lower and larger excitation frequencies than the
primary one. The left region (for lower frequencies) contacts the frequency domain
of irregular waves, while the right region partly overlaps the effective domain for
‘swirling’. The effective domain for ‘square’-like modes is in general overlapped by
the left region of ‘planar’ waves. Moreover, its steady amplitude is significantly
larger than the amplitude of the ‘planar’ waves. Therefore, experiments will most
probably not capture steady-state ‘square’-like waves with a static initial fluid state.
The situation changes with decreasing h. The frequency domain of stable ‘square’-like
waves then occupies a small vicinity of the primary resonance instead of the regions of
irregular waves, while the ‘swirling’ frequency domain moves away from the primary
resonant zone. Taking into account the theoretical results by Ockendon et al. (1996),
calculations by Wu et al. (1998) and experimental observations by Tomawa & Sueoka
(1989) it is believed that this type of motion initializes diagonal-like wave-trains in
shallow fluid sloshing.

When h > h1 and the excitation is in the diagonal plane of the square base, three,
and only three, independent periodic solutions were found. One of them (‘diagonal’) is
associated with synchronous cosine-like amplification of the primary dominant modes
having equal amplitudes. It occurs in the diagonal plane and is formally analogous to
‘planar’ waves from the longitudinal excitation case. There is also a frequency domain
for stable ‘swirling’ modes in the vicinity of the main resonance. In addition, there
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are ‘square’-like modes appearing at an angle to the excitation plane (synchronous
amplification of the primary dominants with different amplitudes), but this regime is
always unstable. The main difference from longitudinal excitation is that for 0.5 > h >

h1 stable steady-state solutions exist for all excitation frequencies close to the main
resonance and there is a zone where ‘swirling’ and ‘diagonal’ modes of comparable
amplitude co-exist. This removes the range of ‘chaotic’ (no stable steady-state regimes)
motions. Additional future analysis should clarify the situation for arbitrary guiding
excitation vectors. There is probably a set of critical angles where the frequency
domain with ‘chaos’ disappears.

An experimental study of resonant sloshing was conducted for longitudinal and
diagonal forcing (due to horizontal tank motions) with h = 0.508, 0.34 and 0.27 and
a small excitation amplitude (amplitude/breadth ratio 0.0078). Since transients did
not die out even after approximately 120 excitation periods (this highlights the minor
dissipation effect), some additional efforts were made to identify the measured data
in terms of expected steady-state motions. The classification of experimental results
was made by both visual observations and post-experimental analysis of recorded
wave elevations near the tank walls. Theoretical and experimental effective frequency
domains of different steady-state wave motions agreed well for both longitudinal
and diagonal forcing. There were some problems in identifying which steady-state
solution is realized for diagonal forcing in the frequency domain where ‘swirling’
and ‘diagonal’ sloshing of similar amplitude co-exist. Additional experimental and
theoretical studies on possible waves in this frequency domain are therefore needed.
The experiments should be done for longer time series and the possibility of stable
non-harmonic solutions should be theoretically investigated.

A quantitative comparison of the theoretical and experimental wave elevations
was also presented. The validation of steady-state regimes used direct numerical
simulations with initial conditions calculated from asymptotic periodical solutions
(up to o(ε)). They agreed very well for ‘planar’ and ‘diagonal’ motions, while the
calculated wave elevations near the wall for the ‘swirling’ mode gave maximum wave
elevation amplitude up to 30% lower than in the experiments. However, the error was
significantly larger when using only dominating modes (up to 200%). This confirmed
implicitly that modification of the modal system should account for some higher
modes having the same order of magnitude as formally dominating ones. Another
source of improvements is connected with unsolved local phenomena documented by
video for ‘swirling’ regimes. These local phenomena appeared as very steep waves
with possible run-up and overturning (similar observations were reported by Arai
et al. 1992a and Chen & Arai 1995). Local phenomena may significantly increase the
measured values at the walls. Similar phenomena were reported by Faltinsen et al.
(2000) and Faltinsen & Timokha (2002a) for two-dimensional sloshing with either
intermediate depths or for sufficiently large excitation amplitude or near the critical
depth h = h1. A future study should also focus on a quantitative description of both
transient and steady-state solutions up to O(ε) by direct numerical integration of
our modal system. This will require experimental data on initial free-surface shapes
and velocities. Preliminary calculations showed that actual three-dimensional sloshing
depends strongly on small changes in initial conditions. However, initial conditions
give negligible changes in the time evolution for frequency domains where ‘planar’ or
‘diagonal’ steady regimes are expected. Another future study could address resonant
sloshing with small deviations between breadth and width (nonlinear free-surface
waves have been investigated by Bridges 1985, 1987). Systematic studies for increasing
forcing amplitude and decreasing fluid depth, including intermediate depth, should be
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done for a tank with similar length and breadth in the same way as done by Faltinsen
& Timokha (2002a). The intermediate-depth case requires Boussinesq-type ordering
and strongly multimodal structure in order to describe progressively activated modes.
A further problem is to estimate dissipative effects during sloshing, especially for
intermediate and shallow depths when they have a dominating character.

A.N.T. is grateful for support from Anders Jahre’s Foundation for Advancement
of Science.

Appendix A. Derivation of the asymptotic modal system
Prior to beginning the derivation we need to define some auxiliary tensors. These

are Λ
(N−2)
i . . . m︸ ︷︷ ︸

N

defined by the integrals

Λ
(0)
ij =

∫ 1/2

−1/2

f
(1)
i f

(1)
j dx =




1, i = j = 0

1
2
, i = j �= 0,

0, i �= j,

Λ
(1)
i,j,k =

∫ 1/2

−1/2

f
(1)
i f

(1)
j f

(1)
k dx = 1

2

(
Λ

(0)
|j−i|k + Λ

(0)
|i+j |k

)
,

...................................................................................

Λ
(N−2)
i . . . m︸ ︷︷ ︸

N

=

∫ 1/2

−1/2

f
(1)
i . . . f (1)

m︸ ︷︷ ︸
N

dx = 1
2

(
Λ

(N−3)
|j−i|...m + Λ

(N−3)
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)
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−1/2r

f
(2)
i . . . f (2)

m︸ ︷︷ ︸
N
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1
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Λ

(N−2)
i . . . m︸ ︷︷ ︸

N

.

In addition, Λ
(−N)
mn,i . . . m︸ ︷︷ ︸

N

is a family of tensors symmetric in nm and i . . . m, but the

comma means no symmetry between those groups of indexes. They are defined as

Λ(−0)
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∫ 1/2

−1/2

(
f (1)

n

)′(
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In a similar way ∫ 1/2r

−1/2r

(
f (2)

n

)′(
f (2)

m

)′
f

(2)
i . . . f

(2)
k︸ ︷︷ ︸

N

dy = rΛ
(−N)
nm,i...k.

Simple calculation shows that

∂An,k

∂βi,j

=

∫ 1/2

−1/2

∫ 1/2r

−1/2r

ϕn,k(x, y, f )f (1)
i f

(1)
j dy dx. (A 1)

Here ϕn,k(x, y, f ) should include terms up to O(β2) = O(ε2/3), namely ϕn,k ≈
ϕn,k(x, y, 0) + (∂ϕn,k/∂z)f + 1

2
(∂2ϕn,k/∂z2)f 2. This gives

ϕn,k(x, y, f ) = f (1)
n f

(2)
k + En,k

(
f (1)

n f (1)
p

)(
f

(2)
k f (2)

q

)
βp,q
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f (1)

n f (1)
p f

(1)
l

)(
f

(2)
k f (2)

q f (2)
m

)
βp,qβl,m, (A 2)

where En,k = λn,k tanh(λn,kh), Dn,k = λ2
n,k/2.

Setting (A 2) into (A 1) leads to the following expressions:

∂An,k

∂βi,j

=
1

r

(
Λ

(0)
ni Λ

(0)
kj + En,kΛ

(1)
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kqmjβ

p,qβl,m
)
.

Processing in a similar way we obtain A(n,k)(i,j ) correct to O(β2):

A(n,k)(i,j ) = Π
(0)
(n,k)(i,j ) + βp,qΠ

(1)
(n,k)(i,j ),(p,q) + βp,qβa,bΠ
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∂βl,m

= Π
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(n,k)(i,j ),(l,m)(p,q),

where
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(0)
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r
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Π
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Π
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(
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r
+ rΛ
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2

+
1

r
Λ

(2)
niapΛ

(2)
kjbq(Dn,kEi,j + Di,jEn,k).

Considering (2.11) as a linear algebraic equation relative to Ri,j suggests the
following asymptotic solution:

Ri,j = V
1,(i,j )
(a,b) β̇ (a,b) + V

2,(i,j )
(a,b),(c,d)β̇

a,bβc,d + V̄
3,(i,j )
(a,b),(c,d)(e,f )β̇

a,bβc,dβe,f . (A 3)

Substituting (A 3) into (2.11) and collecting terms in β̇i,j and βi,j up to third
polynomial order gives

V
1,(n,k)
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δanδkb

En,k

,

V
2,(n,k)
(a,b),(c,d) =

[
En,kΛ
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r
−

Π
(1)
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]/(
En,kΛ

(0)
nnΛ

(0)
kk

r

)
,
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V
3,(n,k)
(a,b),(c,d),(e,f )

=

[
Dn,kΛ

(2)
nceaΛ

(2)
kdf b

r
−

Π
(2)
(n,k)(a,b),(c,d)(e,f )
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− Π
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V̄
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1

2

[
V

3,(n,k)
(a,b),(c,d),(e,f ) + V

3,(n,k)
(a,b),(e,f ),(c,d)

]
,

where δij is the Kronecker symbol.
Simple calculations give

∂l1

∂βi,j

=
δ0j

r(πi)2
[(−1)i − 1],

∂l2

∂βi,j

=
δ0i

r2(πj )2
[(−1)j − 1],

∂l3

∂βi,j

=
Λ

(0)
ii Λ

(0)
jj

r
βi,j .

Calculations of lkω and lkωt are much more complicated. An asymptotic solution of
the Stokes–Zhukovsky potentials (Ω1- and Ω2-scalar harmonic components) is needed
from the following Neumann boundary value conditions:

∂Ω1

∂x

∣∣∣
x=± 1

2

= 0,
∂Ω1

∂y

∣∣∣
y=± 1

2r

= −z,
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∣∣∣
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∣∣∣
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,
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∂x

∣∣∣
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2
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∣∣∣
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∣∣∣
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y

.

Since ωi = O(ε), i = 1, 2 the required asymptotic components ∂lkω/∂βi,j and ∂lkωt/∂βi,j

should be expressed correctly to O(1). This implies that lkω, lkωt and Ωk should contain
only linear terms in βi,j . The procedure gives

Ω1 = Ω
(1)
0 (y, z) + χ1,(i,j )(t)f (1)

i f
(2)
j

cosh(λi,j (z +h))

cosh(λi,j h)
+ o(β),

Ω2 = Ω
(2)
0 (x, z) + χ2,(i,j )(t)f (1)

i f
(2)
j

cosh(λi,j (z +h))

cosh(λi,j h)
+ o(β),


 (A 4)

where χk,(i,j ) are linear combinations in βi,j . Ω
(k)
0 are two-dimensional solutions of

the Neumann boundary value problems
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The solutions according to Faltinsen et al. (2000) are

Ω
(1)
0 = −yz + 2a1,if

(2)
i (y)

sinh(πri(z + 1
2
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cosh(πrih/2)
, Ω
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2
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where

a1,i =
2

r2(iπ)3
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2

(iπ)3
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Inserting (A 4) into expressions for lkω and lkωt gives
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= O(β),
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where the last expression becomes zero unless either i = 0, k = 1 or j = 0, k = 2,
namely

∂l2ω

∂βi,j

= − 2δ0j

r(iπ)3
[(−1)i − 1] tanh(πih/2),

∂l1ω

∂βi,j

=
2δi0

r2(jπ)3
[(−1)j − 1] tanh(πrjh/2).

Projections of the gravitational acceleration vector onto the Oxyz-axes depend on
instantaneous angular position ψi, i = 1, 2:

g1 = gψ2(t) + o(ε), g2 = −gψ1(t) + o(ε), g3 = −g + o(ε).

This completes the calculations of the forcing terms as follows:

δ0i

r2(πj )2
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(2)
j ψ̈1 + gψ1

]
+
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,

where

S
(1)
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2

πi
tanh(πih/2), S

(2)
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2

πj
tanh(πrjh/2). (A 5)

After collecting all the components we arrive at the asymptotic modal system (2.15),
where

P
(1)
i,j =

2δ0jEi,0

(πi)2
[(−1)i − 1], P

(2)
i,j =

2δ0iE0,j
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We have the following coefficients defined in (2.15):
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Appendix B. Coefficients for the asymptotic modal system (3.3)

d1 = d
1,(1,0)
(1,0),(2,0) = t

0,(1,0)
(1,0),(2,0) + t

0,(1,0)
(2,0),(1,0), d2 = d

2,(1,0)
(1,0),(1,0),(1,0) = t

1,(1,0)
(1,0),(1,0),(1,0),

d3 = d
1,(1,0)
(2,0),(1,0), d4 = d

1,(2,0)
(1,0),(1,0), d5 = t

0,(2,0)
(1,0),(1,0),

d6 = d
2,(1,0)
(1,0),(0,1),(0,1), d7 = d

1,(1,0)
(0,1),(1,1), d8 = d

2,(1,0)
(0,1),(0,1),(1,0) + d

2,(1,0)
(0,1),(1,0),(0,1),

d9 = d
1,(1,0)
(1,1),(0,1), d10 = t

1,(1,0)
(0,1),(0,1),(1,0), d11 = t

1,(1,0)
(1,0),(0,1),(0,1) + t

1,(1,0)
(0,1),(1,0),(0,1),
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d12 = t
0,(1,0)
(0,1),(1,1) + t

0,(1,0)
(1,1),(0,1);

d̄1 = d
1,(0,1)
(0,1),(0,2) = t

0,(0,1)
(0,1),(0,2) + t

0,(0,1)
(0,2),(0,1), d̄2 = d

2,(0,1)
(0,1),(0,1),(0,1) = t

1,(0,1)
(0,1),(0,1),(0,1).

d̄3 = d
1,(0,1)
(0,2),(0,1), d̄4 = d

1,(0,2)
(0,1),(0,1), d̄5 = t

0,(0,2)
(0,1),(0,1),

d̄6 = d
2,(0,1)
(0,1),(1,0),(1,0), d̄7 = d

1,(0,1)
(1,0),(1,1), d̄8 = d

2,(0,1)
(1,0),(1,0),(0,1) + d

2,(0,1)
(1,0),(0,1),(1,0),

d̄9 = d
1,(0,1)
(1,1),(1,0), d̄10 = t

1,(0,1)
(1,0),(1,0),(0,1), d̄11 = t

1,(0,1)
(1,0),(0,1),(1,0) + t

1,(0,1)
(0,1),(1,0),(1,0),

d̄12 = t
0,(0,1)
(1,0),(1,1) + t

0,(0,1)
(1,1),(1,0);

d̂1 = d
1,(1,1)
(1,0),(0,1), d̂2 = d

1,(1,1)
(0,1),(1,0), d̂3 = t

0,(1,1)
(1,0),(0,1) + t

0,(1,1)
(0,1),(1,0);

q1 = d
1,(3,0)
(1,0),(2,0), q1 = d

2,(3,0)
(1,0),(1,0),(1,0), q3 = d

1,(3,0)
(2,0),(1,0), q4 = t

1,(3,0)
(1,0),(1,0),(1,0),

q5 = t
0,(3,0)
(1,0),(2,0) + t

0,(3,0)
(2,0),(1,0), q6 = d

1,(2,1)
(1,0),(1,1), q7 = d

2,(2,1)
(1,0),(1,0),(0,1) + d

2,(2,1)
(1,0),(0,1),(1,0),

q8 = d
1,(2,1)
(0,1),(2,0), q9 = d

2,(2,1)
(0,1),(0,1),(1,0), q10 = d

1,(2,1)
(2,0),(0,1), q11 = d

1,(2,1)
(1,1),(1,0),

q12 = t
1,(2,1)
(1,0),(1,0),(0,1), q13 = t

1,(2,1)
(1,0),(0,1),(1,0) + t

1,(2,1)
(0,1),(1,0),(1,0),

q14 = t
0,(2,1)
(1,0),(1,1) + t

0,(2,1)
(1,1),(1,0), q15 = t

0,(2,1)
(0,1),(2,0) + t

0,(2,1)
(2,0),(0,1),

q̄1 = d
1,(0,3)
(0,1),(0,2), q̄2 = d

2,(0,3)
(0,1),(0,1),(0,1), q̄3 = d

1,(0,3)
(0,2),(0,1), q̄4 = t

1,(0,3)
(0,1),(0,1),(0,1),

q̄5 = t
0,(0,3)
(0,1),(0,2) + t

0,(0,3)
(0,2),(0,1), q̄6 = d

1,(1,2)
(0,1),(1,1), q̄7 = d

2,(1,2)
(0,1),(0,1),(1,0) + d

2,(1,2)
(0,1),(1,0),(0,1).

q̄8 = d
1,(1,2)
(1,0),(0,2), q̄9 = d

2,(1,2)
(1,0),(0,1),(0,1), q̄10 = d

1,(1,2)
(0,2),(1,0), q̄11 = d

1,(1,2)
(1,1),(0,1),

q̄12 = t
1,(1,2)
(0,1),(0,1),(1,0), q̄13 = t

1,(1,2)
(1,0),(0,1),(0,1) + t

1,(1,2)
(0,1),(1,0),(0,1),

q̄14 = t
0,(1,2)
(0,1),(1,1) + t

0,(1,2)
(1,1),(0,1), q̄15 = t

0,(1,2)
(1,0),(0,2) + t

0,(1,2)
(0,2),(1,0).
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